964 resultados para Proto-Oncogene Proteins c-sis
Resumo:
We present a case of an 82-year-old female with a painless left latero-cervical swelling, which increased in size over the course of 6 months, compressing adjacent organs. The histopathological examination, following dissection of the left thyroid lobe and ipsilateral cervical lymph nodes, yielded two intermingled morphologically distinct histotypes that included conventional papillary thyroid carcinoma (PTC) and poorly differentiated squamous cell carcinoma (SCC) with cystic features. The clinical presentation, the immunophenotype, and the genotype, especially of the malignant squamous component with partial expression of TTF1, marked expression of p63 and mutation of BRAF, were consistent with the diagnosis of a papillary thyroid carcinoma with squamous component. The possibility of a squamous cell carcinoma of unknown origin metastasizing to a primary papillary thyroid carcinoma cannot be completely ruled out. This particular presentation of thyroid carcinoma carries a poor prognosis in 20% of cases, with high recurrence rates and distant metastasis.
Resumo:
AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.
Resumo:
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.
Resumo:
Birt-Hogg-Dube syndrome refers to a dermatologic syndrome, consisting of small papular skins lesion distributed on the scalp, forehead, face and neck, which is autosomal dominantly inherited. Subsequently patients may develop concomitant renal and thoracic pathology. We report the case of a patient with Birt-Hogg-Dube syndrome diagnosed after spontaneous pneumothorax.
Resumo:
While for many years the diagnosis and therapy of colon cancer did not change drastically, recently new drugs (irinotecan and oxaliplatin, used in adjuvant or neo-adjuvant approaches) and even more recently the introduction of therapies targeting the epidermal growth factor receptor (EGFR) through the monoclonal antibodies cetuximab and panitumumab, are revolutionizing the field. The finding that only patients with a tumor with a wild type (non mutated) KRAS gene respond to anti-EGFR therapy has also affected the way pathologists address colorectal cancer. Molecular analysis of the KRAS gene has become almost a routine in a very short period of time. Pathologists will have to be prepared for a new era: from standard morphology based diagnostic procedures to the prediction of response to therapy using molecular tools.
Resumo:
A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.
Resumo:
Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.
Resumo:
AIMS: Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. METHODS: 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. RESULTS: Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
BACKGROUND: KRAS mutation testing is required to select patients with metastatic colorectal cancer (CRC) to receive anti-epidermal growth factor receptor antibodies, but the optimal KRAS mutation test method is uncertain. METHODS: We conducted a two-site comparison of two commercial KRAS mutation kits - the cobas KRAS Mutation Test and the Qiagen therascreen KRAS Kit - and Sanger sequencing. A panel of 120 CRC specimens was tested with all three methods. The agreement between the cobas test and each of the other methods was assessed. Specimens with discordant results were subjected to quantitative massively parallel pyrosequencing (MPP). DNA blends were tested to determine detection rates at 5% mutant alleles. RESULTS: Reproducibility of the cobas test between sites was 98%. Six mutations were detected by cobas that were not detected by Sanger, and five were confirmed by MPP. The cobas test detected eight mutations which were not detected by the therascreen test, and seven were confirmed by MPP. Detection rates with 5% mutant DNA blends were 100% for the cobas and therascreen tests and 19% for Sanger. CONCLUSION: The cobas test was reproducible between sites, and detected several mutations that were not detected by the therascreen test or Sanger. Sanger sequencing had poor sensitivity for low levels of mutation.
Resumo:
The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.
Resumo:
Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^
Resumo:
Este trabalho mostra o envolvimento do gene RECK no processo de progressão do ciclo celular. Foi verificado que a expressão endógena de RECK é modulada durante a progressão do ciclo celular. A superexpressão de RECK em fibroblastos normais de camundongo promove uma diminuição da capacidade proliferativa das células e um retardo da transição das fases G0/G1-S do ciclo celular. Além disso, os resultados sugerem que um dos possíveis mecanismos de ação de RECK, que promovem este processo, envolve a indução da expressão de um inibidor de CDK, especificamente de p21, e retardo da fosforilação de pRb. Os resultados indicam, ainda, que durante a progressão do ciclo celular a expressão do gene RECK apresenta uma correlação inversa com a expressão do proto-oncogene c-myc. Estes dados corroboram os dados da literatura que mostram RECK como um alvo para o produto de diversos oncogenes, como ras e c-myc. A caracterização da repressão de RECK por c-Myc mostrou que a mesma ocorre ao nível transcricional e que sítios Sp1, presentes no promotor de RECK, são essenciais para a ação de Myc. Dados adicionais sugerem que a repressão de RECK por c-Myc parece envolver mecanismos de desacetilação de histonas. A modulação da expressão de RECK também foi avaliada durante a progressão maligna de tumores do sistema nervoso central (especificamente, gliomas). Foi verificado que a expressão de RECK não é alterada com a progressão deste tipo de tumor. Porém, foi verificado que os pacientes que manifestaram um maior tempo de sobrevida apresentaram tumores com uma significativa maior expressão do gene RECK. Estes dados sugerem que RECK possa ser um possível marcador prognóstico. A caracterização da regulação da expressão de RECK, tanto em células normais como em diferentes tipos de tumores, assim como os alvos moleculares da sua ação, são pontos muito importantes para o entendimento dos mecanismos que controlam a proliferação celular e podem contribuir para o desenvolvimento de novas formas de terapia anti-tumoral.
Resumo:
Although Bell's palsy (BP) is the most common cause of peripheral facial palsy (PFP), other etiologies merit investigation. A 60-year-old female patient presented with recurrent bilateral PFP. Although the patient had a history of acute myeloid leukemia (AML), she had initially been diagnosed with BP-related PFP and had been treated accordingly. When the PFP recurred, additional diagnostic tests were performed. The resulting immunohistochemical profile included CD3 positivity in a few reactive T lymphocytes; positivity for myeloperoxidase in atypical cells; and focal positivity for CD34 and proto-oncogene c-kit proteins in neoplastic cells, thus confirming the suspicion of mastoid infiltration caused by relapsed AML. In patients with neoplastic disease, a finding of PFP calls for extensive investigation in order to rule out the involvement of the temporal bone.
Resumo:
Over-expression of the c-myb gene and expression of activated forms of myb are known to transform haemopoietic cells, particularly cells of the myeloid lineage. Truncations or mutations that disrupt the negative regulatory domain (NRD) of the Myb protein confer an increased ability to transform cells. Although it has proved difficult to link mutations in c-MYB to human leukaemia, no studies investigating the presence of mutations within the c-MYB NRD have been reported. Therefore, we have performed mutational analysis of this region, using polymerase chain reaction-single-stranded conformation polymorphism and sequence analysis, in 26 patients with acute or chronic myeloid leukaemia, No mutations were detected, indicating that mutation of this region of the Myb protein is not common in the pathogenesis or progression of these diseases.