959 resultados para Prosthetic Motor Imaginary Task


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systematic study of pyramidal cell structure has revealed new insights into specialization of the phenotype in the primate cerebral cortex. Regional specialization in the neuronal phenotype may influence patterns of connectivity and the computational abilities of the circuits they compose. The comparative study of pyramidal cells in homologous cortical areas is beginning to yield data on the evolution and development of such specialized circuitry in the primate cerebral cortex. Recently, we have focused our efforts on sensory-motor cortex. Based on our intracellular injection methodology, we have demonstrated a progressive increase in the size of, the branching structure in, and the spine density of the basal dendritic trees of pyramidal cells through somatosensory areas 3b, 1, 2, 5, and 7 in the macaque and vervet monkeys. In addition, we have shown that pyramidal cells in premotor area 6 are larger, more branched, and more spinous than those in the primary motor cortex (MI or area 4) in the macaque monkey, vervet monkey, and baboon. Here we expand the basis for comparison by studying the basal dendritic trees of layer III pyramidal cells in these same sensory-motor areas in the chacma baboon. The baboon was selected because it has a larger cerebral cortex than either the macaque or vervet monkeys; motor cortex has expanded disproportionately in these three species; and motor cortex in the baboon reportedly has differentiated to include a new cortical area not present in either the macaque or vervet monkeys. We found, as in monkeys, a progressive increase in the morphological complexity of pyramidal cells through areas 3b, 5, and 7, as well as from area 4 to area 6, suggesting that areal specialization in microcircuitry was likely to be present in a common ancestor of primates. In addition, we found subtle differences in the extent of the interareal differences in pyramidal cell structure between homologous cortical areas in the three species. (c) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Difficulty performing more than one task at a time is common in people with Parkinson's disease, resulting in interference with one or both tasks. While studies have shown that greater interference in gait occurs with more complex concurrent tasks, the impact of the type of concurrent task is unclear in the Parkinson's population. Thus the first purpose of this study was to investigate the effect of the concurrent task (calculation, language, or motor) on gait in people with Parkinson's disease. As visual cues are commonly used to aid stride regulation in people with Parkinson's disease, the second purpose of this study was to determine whether this method of increasing stride length was still effective if other tasks were performed simultaneously. Sixteen patients with Parkinson's disease and 16 gender- and age-matched controls performed six cognitive and motor concurrent tasks when seated, walking 10 m, and walking over visual cues. Stride length decreased in people with Parkinson's disease when performing the concurrent calculation and language tasks, but not with the motor task. The language task was more complex than the calculation task, thus the effect was not due to task complexity alone. Visual cues were effective in improving stride length whist maintaining velocity in people with Parkinson's disease, even when performed under dual task conditions. These findings highlight the importance of the task when assessing and retraining dual tasking during gait, and suggest that retraining dual tasking can occur whilst simultaneously using visual aids to regulate stride length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents empirical evidence suggesting that healthy humans can perform a two degree of freedom visuo-motor pursuit tracking task with the same response time delay as a one degree of freedom task. In contrast, the time delay of the response is influenced markedly by the nature of the motor synergy required to produce it. We suggest a conceptual account of this evidence based on adaptive model theory, which combines theories of intermittency from psychology and adaptive optimal control from engineering. The intermittent response planning stage has a fixed period. It possesses multiple optimal trajectory generators such that multiple degrees of freedom can be planned concurrently, without requiring an increase in the planning period. In tasks which require unfamiliar motor synergies, or are deemed to be incompatible, internal adaptive models representing movement dynamics are inaccurate. This means that the actual response which is produced will deviate from the one which is planned. For a given target-response discrepancy, corrective response trajectories of longer duration are planned, consistent with the principle of speed-accuracy trade-off. Compared to familiar or compatible tasks, this results in a longer response time delay and reduced accuracy. From the standpoint of the intermittency approach, the findings of this study help make possible a more integral and predictive account of purposive action. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Social loafing is described in the literature as a frequent problem reducing individuals' performance when working in groups. This paper aims to utilize the social identity approach and proposes that under conditions of heightened group salience social loafing can be reduced and turned into social laboring (i.e. increased performance). Design/methodology/approach – Two experimental studies are conducted to examine the impact of participant's group membership salience on task performance. In Study 1, school teachers work either in coactive or in collective working conditions on brainstorming tasks. In Study 2, participants perform both a brainstorming task and a motor task. Findings – The results show social laboring effects. As predicted, participants in the high salient group conditions outperform participants in the low salient group conditions and the coactive individual condition. Practical implications – The results indicate that rather than individuating group members or tasks to overcome social loafing, managers can increase group performance by focusing on group members' perceptions of their groups as important and salient. Originality/value – The studies presented in this paper show that social identity theory and self categorization theory can fruitfully be applied to the field of group performance. The message of these studies for applied settings is that collective work in groups must not necessarily negatively impact performance, i.e. social loafing. By heightening the salience of group memberships groups can even outperform coactively working individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that task-irrelevant somatic activity influences intertemporal decision making: Arm movements associated with approach (arm flexion), rather than avoidance (arm extension), instigate present-biased preferences. The effect is moderated by the sensitivity of the general reward system and, owing to learning principles, restricted to arm positions of the dominant hand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation aimed to pinpoint the elements of motor timing control that are responsible for the increased variability commonly found in children with developmental dyslexia on paced or unpaced motor timing tasks (Chapter 3). Such temporal processing abilities are thought to be important for developing the appropriate phonological representations required for the development of literacy skills. Similar temporal processing difficulties arise in other developmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD). Motor timing behaviour in developmental populations was examined in the context of models of typical human timing behaviour, in particular the Wing-Kristofferson model, allowing estimation of the contribution of different timing control systems, namely timekeeper and implementation systems (Chapter 2 and Methods Chapters 4 and 5). Research examining timing in populations with dyslexia and ADHD has been inconsistent in the application of stimulus parameters and so the first investigation compared motor timing behaviour across different stimulus conditions (Chapter 6). The results question the suitability of visual timing tasks which produced greater performance variability than auditory or bimodal tasks. Following an examination of the validity of the Wing-Kristofferson model (Chapter 7) the model was applied to time series data from an auditory timing task completed by children with reading difficulties and matched control groups (Chapter 8). Expected group differences in timing performance were not found, however, associations between performance and measures of literacy and attention were present. Results also indicated that measures of attention and literacy dissociated in their relationships with components of timing, with literacy ability being correlated with timekeeper variance and attentional control with implementation variance. It is proposed that these timing deficits associated with reading difficulties are attributable to central timekeeping processes and so the contribution of error correction to timing performance was also investigated (Chapter 9). Children with lower scores on measures of literacy and attention were found to have a slower or failed correction response to phase errors in timing behaviour. Results from the series of studies suggest that the motor timing difficulty in poor reading children may stem from failures in the judgement of synchrony due to greater tolerance of uncertainty in the temporal processing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Older adults may have trouble when performing activities of daily living due to decrease in physical strength and degradation of neuromotor and musculoskeletal function. Motor activation patterns during Lateral Step Down and Step Up from 4-inch and 8-inch step heights was assessed in younger (n=8, 24.4 years) and older adults (n=8, 58.9 years) using joint angle kinematics and electromyography of lower extremity muscles. Ground reaction forces were used to ascertain the loading, stabilization and unloading phases of the tasks. Older adults had an altered muscle activation sequence and significantly longer muscle bursts during loading for the tibialis anterior, gastrocnemius, vastus medialis, bicep femoris, gluteus medius and gluteus maximus muscles of the stationary leg. They also demonstrated a significantly larger swing time (579.1 ms vs. 444.8 ms) during the step down task for the moving leg. The novel data suggests presence of age-related differences in motor coordination during lateral stepping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a tremendous increase in our knowledge of hum motor performance over the last few decades. Our theoretical understanding of how an individual learns to move is sophisticated and complex. It is difficult however to relate much of this information in practical terms to physical educators, coaches, and therapists concerned with the learning of motor skills (Shumway-Cook & Woolcott, 1995). Much of our knowledge stems from lab testing which often appears to bear little relation to real-life situations. This lack of ecological validity has slowed the flow of information from the theorists and researchers to the practitioners. This paper is concerned with taking some small aspects of motor learning theory, unifying them, and presenting them in a usable fashion. The intention is not to present a recipe for teaching motor skills, but to present a framework from which solutions can be found. If motor performance research has taught us anything, it is that every individual and situation presents unique challenges. By increasing our ability to conceptualize the learning situation we should be able to develop more flexible and adaptive responses to the challege of teaching motor skills. The model presented here allows a teacher, coach, or therapist to use readily available observations and known characteristics about a motor task and to conceptualize them in a manner which allows them to make appropriate teaching/learning decisions.