893 resultados para Propagation of lights
Resumo:
Focally evoked calcium waves in astrocyte cultures have been thought to propagate by gap-junction-mediated intercellular passage of chemical signal(s). In contrast to this mechanism we observed isolated astrocytes, which had no physical contact with other astrocytes in the culture, participating in a calcium wave. This observation requires an extracellular route of astrocyte signaling. To directly test for extracellular signaling we made cell-free lanes 10–300 μm wide in confluent cultures by deleting astrocytes with a glass pipette. After 4–8 hr of recovery, regions of confluent astrocytes separated by lanes devoid of cells were easily located. Electrical stimulation was used to initiate calcium waves. Waves crossed narrow (<120 μm) cell-free lanes in 15 of 36 cases, but failed to cross lanes wider than 120 μm in eight of eight cases. The probability of crossing narrow lanes was not correlated with the distance from the stimulation site, suggesting that cells along the path of the calcium wave release the extracellular messenger(s). Calculated velocity across the acellular lanes was not significantly different from velocity through regions of confluent astrocytes. Focal superfusion altered both the extent and the direction of calcium waves in confluent regions. These data indicate that extracellular signals may play a role in astrocyte–astrocyte communication in situ.
Resumo:
Plant cells can respond qualitatively and quantitatively to a wide range of environmental signals. Ca2+ is used as an intracellular signal for volume regulation in response to external osmotic changes. We show here that the spatiotemporal patterns of hypo-osmotically induced Ca2+ signals vary dramatically with stimulus strength in embryonic cells of the marine alga Fucus. Biphasic or multiphasic Ca2+ signals reflect Ca2+ elevations in distinct cellular domains. These propagate via elemental Ca2+ release in nuclear or peripheral regions that are rich in endoplasmic reticulum. Cell volume regulation specifically requires Ca2+ elevation in apical peripheral regions, whereas an altered cell division rate occurs only in response to stimuli that cause Ca2+ elevation in nuclear regions.
Resumo:
The cytoplasmic heritable determinant [PSI+] of the yeast Saccharomyces cerevisiae reflects the prion-like properties of the chromosome-encoded protein Sup35p. This protein is known to be an essential eukaryote polypeptide release factor, namely eRF3. In a [PSI+] background, the prion conformer of Sup35p forms large oligomers, which results in the intracellular depletion of functional release factor and hence inefficient translation termination. We have investigated the process by which the [PSI+] determinant can be efficiently eliminated from strains, by growth in the presence of the protein denaturant guanidine hydrochloride (GuHCl). Strains are “cured” of [PSI+] by millimolar concentrations of GuHCl, well below that normally required for protein denaturation. Here we provide evidence indicating that the elimination of the [PSI+] determinant is not derived from the direct dissolution of self-replicating [PSI+] seeds by GuHCl. Although GuHCl does elicit a moderate stress response, the elimination of [PSI+] is not enhanced by stress, and furthermore, exhibits an absolute requirement for continued cell division. We propose that GuHCl inhibits a critical event in the propagation of the prion conformer and demonstrate that the kinetics of curing by GuHCl fit a random segregation model whereby the heritable [PSI+] element is diluted from a culture, after the total inhibition of prion replication by GuHCl.
Resumo:
Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.
Resumo:
Computational maps are of central importance to a neuronal representation of the outside world. In a map, neighboring neurons respond to similar sensory features. A well studied example is the computational map of interaural time differences (ITDs), which is essential to sound localization in a variety of species and allows resolution of ITDs of the order of 10 μs. Nevertheless, it is unclear how such an orderly representation of temporal features arises. We address this problem by modeling the ontogenetic development of an ITD map in the laminar nucleus of the barn owl. We show how the owl's ITD map can emerge from a combined action of homosynaptic spike-based Hebbian learning and its propagation along the presynaptic axon. In spike-based Hebbian learning, synaptic strengths are modified according to the timing of pre- and postsynaptic action potentials. In unspecific axonal learning, a synapse's modification gives rise to a factor that propagates along the presynaptic axon and affects the properties of synapses at neighboring neurons. Our results indicate that both Hebbian learning and its presynaptic propagation are necessary for map formation in the laminar nucleus, but the latter can be orders of magnitude weaker than the former. We argue that the algorithm is important for the formation of computational maps, when, in particular, time plays a key role.
Resumo:
To gain entry into cells, viruses utilize a variety of different cell-surface molecules. Foot-and-mouth disease virus (FMDV) binds to cell-surface integrin molecules via an arginine-glycine-aspartic acid (RGD) sequence in capsid protein VP1. Binding to this particular cell-surface molecule influences FMDV tropism, and virus/receptor interactions appear to be responsible, in part, for selection of antigenic variants. To study early events of virus-cell interaction, we engineered an alternative and novel receptor for FMDV. Specifically, we generated a new receptor by fusing a virus-binding, single-chain antibody (scAb) to intracellular adhesion molecule 1 (ICAM1). Cells that are normally not susceptible to FMDV infection became susceptible after being transfected with DNA encoding the scAb/ICAM1 protein. An escape mutant (B2PD.3), derived with the mAb used to generate the genetically engineered receptor, was restricted for growth on the scAb/ICAM1 cells, but a variant of B2PD.3 selected by propagation on scAb/ICAM1 cells grew well on these cells. This variant partially regained wild-type sequence in the epitope recognized by the mAb and also regained the ability to be neutralize by the mAb. Moreover, RGD-deleted virions that are noninfectious in animals and other cell types grew to high titers and were able to form plaques on scAb/ ICAM1 cells. These studies demonstrate the first production of a totally synthetic cell-surface receptor for a virus. This novel approach will be useful for studying virus reception and for the development of safer vaccines against viral pathogens of animals and humans.
Resumo:
The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.
Resumo:
We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal.
Resumo:
Scoping behavioral variations to dynamic extents is useful to support non-functional concerns that otherwise result in cross-cutting code. Unfortunately, such forms of scoping are difficult to obtain with traditional reflection or aspects. We propose delegation proxies, a dynamic proxy model that supports behavioral intercession through the interception of various interpretation operations. Delegation proxies permit different behavioral variations to be easily composed together. We show how delegation proxies enable behavioral variations that can propagate to dynamic extents. We demonstrate our approach with examples of behavioral variations scoped to dynamic extents that help simplify code related to safety, reliability, and monitoring.
Resumo:
Mode of access: Internet.
Resumo:
Reprint, Michigan engineer, 1904, p. 229-245.