883 resultados para Promoters
Resumo:
Recombinant AAV-8 vectors have shown significant promise for hepatic gene therapy of hemophilia B. However, the theme of AAV vector dose dependent immunotoxicity seen with AAV2 vectors earlier seem to re-emerge with AAV8 vectors as well. It is therefore important to develop novel AAV8 vectors that provide enhanced gene expression at significantly less vector doses. We hypothesized that AAV8 during its intracellular trafficking, are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of specific serine/threonine kinase or ubiquitination targets on AAV8 capsid (Fig.1A) may improve its transduction efficiency. To test this, point mutations at specific serine (S)/threonine (T) > alanine (A) or lysine (K)>arginine (R) residues were generated on AAV8 capsid. scAAV8-EGFP vectors containing the wild-type (WT) and each one of the 5 S/T/K-mutant(S276A, S501A, S671A, T251A and K137R) capsids were evaluated for their liver transduction efficiency at a dose of 5 X 1010 vgs/ animal in C57BL/6 mice in vivo. The best performing mutant was found to be the K137R vector in terms of either the gene expression (46-fold) or the vector copy numbers in the hepatocytes (22-fold) compared to WT-AAV8 (Fig.1B). The K137R-AAV8 vector that showed significantly decreased ubiquitination of the viral capsid had reduced activation of markers of innate immune response [IL-6, IL-12, tumor necrosis factor α, Kupffer cells and TLR-9]. In addition, animals injected with the K137R mutant also demonstrated decreased (2-fold) levels of cross-neutralizing antibodies when compared to animals that received the WT-AAV8 vector. To study further the utility of the novel AAV8-K137R mutant in a therapeutic setting, we delivered human coagulation factor IX (h.FIX) under the control of liver specific promoters (LP1 or hAAT) at two different doses (2.5x10^10 and 1x10^11 vgs per mouse) in 8-12 weeks old male C57BL/6 mice. As can be seen in Fig.1C/D, the circulating levels of h.FIX were higher in all the K137R-AAV8 treated groups as compared to the WT-AAV8 treated groups either at 2 weeks (62% vs 37% for hAAT constructs and 47% vs 21% for LP1 constructs) or 4 weeks (78% vs 56% for hAAT constructs and 64% vs 30% for LP1 constructs) post hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel vector for potential gene therapy of hemophilia B.
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
Three-dimensional positioning of the nuclear genome plays an important role in the epigenetic regulation of genes. Although nucleographic domain compartmentalization in the regulation of epigenetic state and gene expression is well established in higher organisms, it remains poorly understood in the pathogenic parasite Plasmodium falciparum. In the present study, we report that two histone tail modifications, H3K9Ac and H3K14Ac, are differentially distributed in the parasite nucleus. We find colocalization of active gene promoters such as Tu1 (tubulin-1 expressed in the asexual stages) with H3K9Ac marks at the nuclear periphery. By contrast, asexual stage inactive gene promoters such as Pfg27 (gametocyte marker) and Pfs28 (ookinete marker) occupy H3K9Ac devoid zones at the nuclear periphery. The histone H3K9 is predominantly acetylated by the PCAF/GCN5 class of lysine acetyltransferases, which is well characterized in the parasite. Interestingly, embelin, a specific inhibitor of PCAF/GCN5 family histone acetyltransferase, selectively decreases total H3K9Ac acetylation levels (but not H3K14Ac levels) around the var gene promoters, leading to the downregulation of var gene expression, suggesting interplay among histone acetylation status, as well as subnuclear compartmentalization of different genes and their activation in the parasites. Finally, we found that embelin inhibited parasitic growth at the low micromolar range, raising the possibility of using histone acetyltransferases as a target for antimalarial therapy.
Resumo:
Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and Delta narL mutant strain during exponential growth in broth cultures with or without nitrate defined an similar to 30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis Delta devR, Delta devS Delta dosT, and Delta narL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR similar to P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.
Resumo:
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.
Resumo:
Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T -> Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S -> A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (similar to 9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector bio-distribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h. FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h. FIX: Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.
Resumo:
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Resumo:
Background: DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Methods: Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Results: Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Conclusion: Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.
Resumo:
Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.
Resumo:
Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.
Resumo:
The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Es-cherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobac-terium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of suboptimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI.
Resumo:
Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.
Resumo:
Resumen: Los avances del liberalismo conmovieron, en buena medida, a la filosofía cristiana. Efectivamente él consagró el valor de la libertad como aspiración máxima y, en su nombre, se intentó sacudir el yugo de la autoridad y la Iglesia no quedó al margen, por lo que los católicos se replantearon muchas de sus posiciones, a fin de poder brindar las respuestas sociales que la sociedad estaba reclamando. Fue así que apareció la tercera escolástica, concebida como un movimiento de renovación contra el liberalismo que lo había invadido todo. Los propulsores de esta corriente decidieron restaurar en las escuelas y universidades la filosofía de Santo Tomás. La Argentina sufrió también las embestidas del liberalismo, lo que impulsó a los católicos a prepararse para plasmar soluciones en las más diversas áreas, con la idea de fondo de imponer el catolicismo como el principio organizador del medio social, argumentando que esa había sido la tendencia histórica en el país. Así fue como la tercera renovación escolástica, o neotomismo, penetró en la Argentina a fines del siglo XIX y en el XX, y se impuso tanto entre los seminaristas como en la Universidad de Córdoba y particularmente en su Facultad de Derecho y Ciencias Sociales. Durante los últimos años del otoño decimonónico la neoescolástica estuvo presente en muchas de las tesis presentadas en la Facultad de Derecho, siguiendo, en este aspecto, una tradición de la universidad cordobesa, la que predominaba también entre ciertos profesores. En este trabajo rastreamos los fundamentos del poder político que se encuentran en esos trabajos, refiriéndonos, por un lado, a la visión del grupo sobre el orden, a la igualdad y el progreso y, por otro, a los derechos del hombre.
Resumo:
The ability to regulate gene expression is of central importance for the adaptability of living organisms to changes in their internal and external environment. At the transcriptional level, binding of transcription factors (TFs) in the vicinity of promoters can modulate the rate at which transcripts are produced, and as such play an important role in gene regulation. TFs with regulatory action at multiple promoters is the rule rather than the exception, with examples ranging from TFs like the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes, to situations involving multiple copies of the same gene, such as on plasmids, or viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in coupling ("entanglement") between transcription of different genes. The last few decades have seen rapid advances in our ability to quantitatively measure such effects, which calls for biophysical models to explain these data. Here we develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression and the resulting correlation in transcription rates for a general set of promoters. To test these predictions experimentally, we create genetic constructs with known TF copy number, binding site affinities, and gene copy number; hence avoiding the need to use free fit parameters. Our results clearly prove the TF titration effect and that the statistical mechanical model can accurately predict the fold change in gene expression for the studied cases. We also generalize these experimental efforts to cover systems with multiple different genes, using the method of mRNA fluorescence in situ hybridization (FISH). Interestingly, we can use the TF titration affect as a tool to measure the plasmid copy number at different points in the cell cycle, as well as the plasmid copy number variance. Finally, we investigate the strategies of transcriptional regulation used in a real organism by analyzing the thousands of known regulatory interactions in E. coli. We introduce a "random promoter architecture model" to identify overrepresented regulatory strategies, such as TF pairs which coregulate the same genes more frequently than would be expected by chance, indicating a related biological function. Furthermore, we investigate whether promoter architecture has a systematic effect on gene expression by linking the regulatory data of E. coli to genome-wide expression censuses.
Resumo:
Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.
However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.
Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.