972 resultados para Project methodology
Resumo:
Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.
Resumo:
Effective management of projects is becoming increasingly important for any type of organization to remain competitive in today’s dynamic business environment due to pressure of globalization. The use of benchmarking is widening as a technique for supporting project management. Benchmarking can be described as the search for the best practices, leading to the superior performance of an organization. However, effectiveness of benchmarking depends on the use of tools for collecting and analyzing information and deriving subsequent improvement projects. This study demonstrates how analytic hierarchy process (AHP), a multiple attribute decision-making technique, can be used for benchmarking project management practices. The entire methodology has been applied to benchmark project management practice of Caribbean public sector organizations with organizations in the Indian petroleum sector, organizations in the infrastructure sector of Thailand and the UK. This study demonstrates the effectiveness of a proposed benchmarking model using AHP, determines problems and issues of Caribbean project management in the public sector and suggests improvement measures for effective project management.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
An inherent weakness in the management of large scale projects is the failure to achieve the scheduled completion date. When projects are planned with the objective of time achievement, the initial planning plays a vital role in the successful achievement of project deadlines. Cost and quality are additional priorities when such projects are being executed. This article proposes a methodology for achieving time duration of a project through risk analysis with the application of a Monte Carlo simulation technique. The methodology is demonstrated using a case application of a cross-country petroleum pipeline construction project.
Resumo:
Feasibility studies of industrial projects consist of multiple analyses carried out sequentially. This is time consuming and each analysis screens out alternatives based solely on the merits of that analysis. In cross-country petroleum pipeline project selection, market analysis determines throughput requirement and supply and demand points. Technical analysis identifies technological options and alternatives for pipe-line routes. Economic and financial analysis derive the least-cost option. The impact assessment addresses environmental issues. The impact assessment often suggests alternative sites, routes, technologies, and/or implementation methodology, necessitating revision of technical and financial analysis. This report suggests an integrated approach to feasibility analysis presented as a case application of a cross-country petroleum pipeline project in India.
Resumo:
The topic of bioenergy, biofuels and bioproducts remains at the top of the current political and research agenda. Identification of the optimum processing routes for biomass, in terms of efficiency, cost, environment and socio-economics is vital as concern grows over the remaining fossil fuel resources, climate change and energy security. It is known that the only renewable way of producing conventional hydrocarbon fuels and organic chemicals is from biomass, but the problem remains of identifying the best product mix and the most efficient way of processing biomass to products. The aim is to move Europe towards a biobased economy and it is widely accepted that biorefineries are key to this development. A methodology was required for the generation and evaluation of biorefinery process chains for converting biomass into one or more valuable products that properly considers performance, cost, environment, socio-economics and other factors that influence the commercial viability of a process. In this thesis a methodology to achieve this objective is described. The completed methodology includes process chain generation, process modelling and subsequent analysis and comparison of results in order to evaluate alternative process routes. A modular structure was chosen to allow greater flexibility and allowing the user to generate a large number of different biorefinery configurations The significance of the approach is that the methodology is defined and is thus rigorous and consistent and may be readily re-examined if circumstances change. There was the requirement for consistency in structure and use, particularly for multiple analyses. It was important that analyses could be quickly and easily carried out to consider, for example, different scales, configurations and product portfolios and so that previous outcomes could be readily reconsidered. The result of the completed methodology is the identification of the most promising biorefinery chains from those considered as part of the European Biosynergy Project.
Resumo:
The Systems Engineering Group (SEG) at De Montfort University are developing the Boardman Soft Systems Methodology (BSSM) which allows complex human systems to be modelled, this work builds upon Checkland's Soft Systems Methodology (1981). The BSSM has been applied to the modelling of the systems engineering process as used in design and manufacturing companies. The BSSM is used to solicit information from a company and this data is then transformed into systemic diagrams (systemigrams). These systemigrams are posited to be accurate and concise representations of the system which has been modelled. This paper describes the collaboration between SEG and a manufacturing company (MC) in Leicester, England. The purpose of this collaboration was twofold. First, it was to create an objective view of the MC's processes, in the form of systemigrams. It was important to get this modelled by a source outside of the company, as it is difficult for people within a system being modelled to be unbiased. Secondly, it allowed a series of systemigrams to be produced which can then be subjected to simulation, for the purpose of aiding risk management decisions and to reduce the project cycle time
Resumo:
The aim of this work was to develop a generic methodology for evaluating and selecting, at the conceptual design phase of a project, the best process technology for Natural Gas conditioning. A generic approach would be simple and require less time and would give a better understanding of why one process is to be preferred over another. This will lead to a better understanding of the problem. Such a methodology would be useful in evaluating existing, novel and hybrid technologies. However, to date no information is available in the published literature on such a generic approach to gas processing. It is believed that the generic methodology presented here is the first available for choosing the best or cheapest method of separation for natural gas dew-point control. Process cost data are derived from evaluations carried out by the vendors. These evaluations are then modelled using a steady-state simulation package. From the results of the modelling the cost data received are correlated and defined with respect to the design or sizing parameters. This allows comparisons between different process systems to be made in terms of the overall process. The generic methodology is based on the concept of a Comparative Separation Cost. This takes into account the efficiency of each process, the value of its products, and the associated costs. To illustrate the general applicability of the methodology, three different cases suggested by BP Exploration are evaluated. This work has shown that it is possible to identify the most competitive process operations at the conceptual design phase and illustrate why one process has an advantage over another. Furthermore, the same methodology has been used to identify and evaluate hybrid processes. It has been determined here that in some cases they offer substantial advantages over the separate process techniques.
Resumo:
An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.
Resumo:
The main purpose of the study is to develop an integrated framework for managing project risks by analyzing risk across project, work package and activity levels, and developing responses. Design/methodology/approach: The study first reviews the literature of various contemporary risk management frameworks in order to identify gaps in project risk management knowledge. Then it develops a conceptual risk management framework using combined analytic hierarchy process (AHP) and risk map for managing project risks. The proposed framework has then been applied to a 1500 km oil pipeline construction project in India in order to demonstrate its effectiveness. The concerned project stakeholders were involved through focus group discussions for applying the proposed risk management framework in the project under study. Findings: The combined AHP and risk map approach is very effective to manage project risks across project, work package and activity levels. The risk factors in project level are caused because of external forces such as business environment (e.g. customers, competitors, technological development, politics, socioeconomic environment). The risk factors in work package and activity levels are operational in nature and created due to internal causes such as lack of material and labor productivity, implementation issues, team ineffectiveness, etc. Practical implications: The suggested model can be applied to any complex project and helps manage risk throughout the project life cycle. Originality/value: Both business and operational risks constitute project risks. In one hand, the conventional project risk management frameworks emphasize on managing business risks and often ignore operational risks. On the other hand, the studies that deal with operational risk often do not link them with business risks. However, they need to be addressed in an integrated way as there are a few risks that affect only the specific level. Hence, this study bridges the gaps. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose – The purpose of the paper was to conduct an empirical investigation to explore the impact of project management maturity models (PMMMs) on improving project performance. Design/methodology/approach – The investigation used a cross-case analysis involving over 90 individuals in seven organisations. Findings – The findings of the empirical investigation indicate that PMMMs demonstrate very high levels of variability in individual's assessment of project management maturity. Furthermore, at higher levels of maturity, the type of performance improvement adopted following their application is related to the type of PMMM used in the assessment. The paradox of the unreliability of PMMMs and their widespread acceptance is resolved by calling upon the “wisdom of crowds” phenomenon which has implications for the use of maturity model assessments in other arena. Research limitations/implications – The investigation does have the usual issues associated with case research, but the steps that have been taken in the cross-case construction and analysis have improved the overall robustness and extendibility of the findings. Practical implications – The tendency for PMMMs to shape improvements based on their own inherent structure needs further understanding. Originality/value – The use of empirical methods to investigate the link between project maturity models and extant changes in project management performance is highly novel and the findings that result from this have added resonance.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
Projects that are exposed to uncertain environments can be effectively controlled with the application of risk analysis during the planning stage. The Analytic Hierarchy Process, a multiattribute decision-making technique, can be used to analyse and assess project risks which are objective or subjective in nature. Among other advantages, the process logically integrates the various elements in the planning process. The results from risk analysis and activity analysis are then used to develop a logical contingency allowance for the project through the application of probability theory. The contingency allowance is created in two parts: (a) a technical contingency, and (b) a management contingency. This provides a basis for decision making in a changing project environment. Effective control of the project is made possible by the limitation of the changes within the monetary contingency allowance for the work package concerned, and the utilization of the contingency through proper appropriation. The whole methodology is applied to a pipeline-laying project in India, and its effectiveness in project control is demonstrated.
Resumo:
In the last few years Agile methodologies appeared as a reaction to traditional ways of developing software and acknowledge the need for an alternative to documentation driven, heavyweight software development processes. This paper shortly presents a combination between Rational Uni ed Process and an agile approach for software development of e-business applications. The resulting approach is described stressing on the strong aspects of both combined methodologies. The article provides a case study of the proposed methodology which was developed and executed in a successful e-project in the area of the embedded systems.