961 resultados para Progress report
Resumo:
The State of Michigan is striving to eliminate bovine tuberculosis (Tb) infection among free-ranging white-tailed deer in the northeastern Lower Peninsula of the state. Aggressive reduction in the overall deer population abundance may help to further reduce TB prevalence, but this course of action is unacceptable to many hunters and landowners. Targeted culling of sick deer would likely be far more acceptable to these stakeholders, so in the winter of 2003 the Michigan Department of Natural Resources pilot-trialed a new strategy based on live-trapping and Tb-testing of wild deer. The field study was conducted in a township with relatively high TB prevalence within Deer Management Unit 452 in the northeastern Lower Peninsula. Over a 2-month trapping period, 119 individual deer were live-trapped, blood sampled, fitted with a radio-collar, and released. A total of 31 of these deer were subsequently classified as Tb-suspect by at least one of five blood tests employed (however there was a low level of agreement among tests). A delay in testing meant that only six of these suspect deer were culled by sharpshooters before pre-programmed release of their radio-collars, after which they could no longer be located. Mycobacterium bovis was cultured from one of these six suspect deer; the other five were negative on culture. All target deer were located to within shooting range with 1 – 2 days of effort, and all the radio-collars on the apparently-healthy deer dropped off after the intended 90-day interval, and were thereafter recovered for re-use. There was considerable support for this pilot project among hunters, farmers, state and federal agriculture agencies, the media and the general public, and so we recommend that further field trials be undertaken using this technique. The initial focus of these trials should be on improving the efficacy and reliability of the blood testing procedure.
Resumo:
Two feedlot trials were conducted to evaluate the effects of feeding frequency (once daily in the morning, once daily in the afternoon or twice daily) and feeding level (ad libitum, 95% of ad libitum, or 90% of ad libitum) on the feedlot performance and carcass composition of beef steers. Data were collected using 196 yearling beef steers. In both trials cattle fed once daily in the morning tended to have higher gains and better feed efficiencies than cattle fed once daily in the afternoon or cattle fed twice daily. Overall, cattle restricted to 95% and 90% of ad libitum intake levels had better feed efficiencies than cattle with ad libitum access to feed. Cattle fed once daily in the morning tended to have less backfat than cattle fed once daily in the afternoon or cattle fed twice daily.
Resumo:
Faculty in the Department of Animal Science initiated soliciting of funds in 1987 to establish a permanent endowment to recognize the distinguished career and major contributions of Dr. Wise Burroughs, a distinguished professor in animal science at Iowa State University. The endowment was established in the Iowa State University Foundation in 1991. The purpose of the fund is to support research and graduate education in the areas of fundamental factors regulating growth in food-producing animals, with emphasis on ruminants; to enhance growth of animals with the goal of improving the competitive position of ruminants as food-producing animals; and to develop innovative approaches to ruminant nutrition and/or growth enhancement as a means to improve desirability of meat produced by food animals. Dr. Burroughs’ research resulted in important and significant developments in technology for modern production systems for beef cattle. He was widely known for his ability to communicate complex ideas and research results for use by those involved in the animal industry. The current Burroughs Team has established three research projects: 1) Ghrelin--How does ghrelin affect blood and body composition in rats?; 2) Use of 25- hydroxyvitamin D3 to improve tenderness of beef; 3) Redesigning beef cattle to have a more healthful fatty acid composition.
Resumo:
This progress report is an introduction to a study to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. Because the first year is still in progress and the first trial is not complete, few data are available. However, there is a suggestion that feeding an ionophore to young calves on pasture may result in improved daily gains.
Resumo:
A three-year study was conducted to integrate pasturing systems with drylot feeding systems. Each year 84 fall-born and 28 spring-born calves of similar genotypes were used. Fall-born calves were started on test in May, and spring-born calves were started in October. Seven treatments were imposed: 1) fall-born calves directly into the feedlot (28 steers); 2 and 3) fall-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of July (14 steers in each treatment); 4 and 5) fall-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of October (14 steers in each treatment); and 6 and 7) spring-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of October (14 steers in each treatment). Cattle on pasture receiving an ionophore gained faster (P=.009), but lost this advantage in drylot (P>.10). Overall, cattle started directly in the feedlot had higher gains (P<.001). Cattle receiving an ionophore on pasture had lower KPH than those that did not receive an ionophore (P<.01). Treatment influenced yield grade (P<0.001), although all treatments were YG 2. The percentage of cattle grading Prime and Choice was 75 % or higher for all treatment groups. The results show that using an ionophore improved pasture gains and that pasture treatments did not adversely influence yield and quality grades.
Resumo:
This progress report presents the findings of the first two years of a multi-year study. Each year 84 fall-born and 28 spring-born calves of similar genetic background were used to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. The fall-born calves were started on test on May 7, 1996, and May 8, 1997, whereas the spring-born calves were started on test on October 1, 1996, and September 13, 1997. A total of seven treatments were imposed: 1) fall-born calves directly into the feedlot; 2) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on July 30, 1996, and July 29, 1997 in the first and second years, respectively; 3) fall-born calves put on pasture without an ionophore and moved to the feedlot on July 30, 1996 and July 29, 1997, in the first and second years, respectively; 4) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; 5) fall-born calves put on pasture without an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; 6) spring-born calves put on pasture and receiving an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; and 7) spring-born calves put on pasture without an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively. Cattle receiving an ionophore on pasture gained more rapidly; however, cattle without access to an ionophore gained more rapidly in drylot thus negating the advantage obtained on pasture. Overall daily gains and feed conversions in drylot only, improved with increasing numbers of days fed in drylot; however, this may not be very cost effective. At similar end weights no real differences were observed in yield grades among the treatments; however, for fall-born calves the percentage grading Prime and Choice was higher for cattle fed longer in drylot.
Resumo:
In this study, 84 fall-born and 28 spring-born calves of similar genetic background were used to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. Because the second-year trial is not complete, this report will include only the first year of the five-year study. Seven treatments were imposed: 1) fall-born calves put directly into the feedlot on May 7, 1996; 2) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on July 30, 3) fall born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on July 30; 4) fall-born calves put on pasture on May 7 and receiving an ionophore and moved to the feedlot on October 22; 5) fall-born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on October 22; 6) spring-born calves put on pasture on October 1 and receiving an ionophore and moved to the feedlot on October 22; and 7) spring-born calves put on pasture on October 1 and not receiving an ionophore and moved to feedlot on October 22. Performance data showed that cattle on pasture receiving an ionophore had higher gains than those not receiving an ionophore on pasture. This trend was reversed in the feedlot period. Yield grades were not greatly influenced by treatment, although quality grades tended to be higher for older cattle and those cattle that were in drylot for a longer period of time.
Resumo:
In September 1995, 225 spring-born calves were weaned on pasture at the McNay Memorial Research and Demonstration Farm to explore procedures necessary to conduct a successful pasture-weaning program. In the two to three week post-weaning period, average daily gains (ADG) for the two groups weaned that year were 1.06 and 3.06 pounds; there were no health problems. In 1996, a research trial utilizing 242 spring-born calves was conducted to compare pastureweaned and feedlot-weaned calves. Half of the calves were weaned on pasture for three weeks and then placed in a feedlot for three more weeks. The other half of the calves were weaned directly into the feedlot for the six week post-weaning period. ADGs during the three week post-weaning period were 1.24 and 2.42 for the pastureweaned and feedlot-weaned calves. For the entire six week trial, ADGs were 1.83 and 2.40 for the pastureweaned and feedlot-weaned calves. There was no sickness in either weaning treatment during the six week trial. Initial experience indicates pasture-weaning is a feasible method of getting calves through a stressful procedure.
Resumo:
Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).
Resumo:
To determine environmental, soil, and sward effects at the initiation of cattle grazing in the spring on seasonal (forage accumulated during the grazing season) and cumulative (seasonal + initial forage mass) forage accumulation (FA), 15 commercial cow-calf producers from southern Iowa were selected by historical initial grazing date. At grazing initiation, twelve .25-m2 samples were hand-clipped from each pasture and sward heights (SH) measured with a falling plane meter (4.8 kg/m2) to determine initial forage mass. At each location, soil temperature and load bearing capacity (LBC) were measured and a soil sample was collected to measure pH and moisture, P, and K concentrations. Cumulative degree-days (base=3.85°C) and precipitation at grazing initiation were calculated from NOAA records. At the beginning of each month, at least three grazing exclosures were placed on each grazed pasture to determine monthly FA. SH in each exclosure was recorded, and a .25-m2 forage sample was hand-clipped proximate to each exclosure. At the end of each month, SH was recorded and .25-m2 hand-clipped forage samples from inside exclosures were obtained. In linear regressions, cumulative and seasonal SH increased with greater soil P (r2=.5049 and .5417), soil K (r2=.4675 and .4397), and initial forage mass (r2=.1984 and .2801). Seasonal SH increased with earlier initial grazing dates (r2=.1996) and less accumulated degree-days (r2=.2364). Cumulative and seasonal FA increased with earlier initial grazing dates (r2=.2106 and .3744), lower soil temperatures (r2=.2617 and.2874), and greater soil P (r2=.3489 and .2598). Cumulative FA increased with greater soil K (r2=.4675). In quadratic regressions, cumulative and seasonal SH were correlated to soil P (r2=.6310 and .5310) and soil K (r2=.5095 and.4401). Cumulative and seasonal FA were correlated to degree days (r2=.3630 and.4013) and initial grazing date (r2=.3425 and .4088). Cumulative FA was correlated to soil P (r2=.3539), and seasonal FA was correlated to soil moisture (r2=.3688).
Resumo:
Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.