956 resultados para Production engineering Data processing
Resumo:
In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.
Resumo:
The aim of this novel experimental study is to investigate the behaviour of a 2m x 2m model of a masonry groin vault, which is built by the assembly of blocks made of a 3D-printed plastic skin filled with mortar. The choice of the groin vault is due to the large presence of this vulnerable roofing system in the historical heritage. Experimental tests on the shaking table are carried out to explore the vault response on two support boundary conditions, involving four lateral confinement modes. The data processing of markers displacement has allowed to examine the collapse mechanisms of the vault, based on the arches deformed shapes. There then follows a numerical evaluation, to provide the orders of magnitude of the displacements associated to the previous mechanisms. Given that these displacements are related to the arches shortening and elongation, the last objective is the definition of a critical elongation between two diagonal bricks and consequently of a diagonal portion. This study aims to continue the previous work and to take another step forward in the research of ground motion effects on masonry structures.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.
Resumo:
Background: Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1 beta and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold) using caspase-1 deficient mice (casp1-/-). Results: Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE(2) and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL)-1 beta and cyclooxygenase (COX)-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNF)alpha and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1 beta and PGE(2) did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-alpha and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1 beta was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE(2) production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion: These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1 beta maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE(2) production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A processing route has been developed for recovering the desired lambda fiber in iron-silicon electrical steel needed for superior magnetic properties in electric motor application. The lambda fiber texture is available in directionally solidified iron-silicon steel with the < 001 > columnar grains but was lost after heavy rolling and recrystallization required for motor laminations. Two steps of light rolling each followed by recrystallization were found to largely restore the desired fiber texture. This strengthening of the < 001 > fiber texture had been predicted on the basis of the strain-induced boundary migration (SIBM) mechanism during recrystallization of lightly rolled steel from existing grains of near the ideal orientation, due to postulated low stored energies. Taylor and finite element models supported the idea of the low stored energy of the lambda fiber grains. The models also showed that the lambda fiber grains, though unstable during rolling, only rotated away from their initial orientations quite slowly.
Resumo:
In this work, a system using active RFID tags to supervise truck bulk cargo is described. The tags are attached to the bodies of the trucks and readers are distributed in the cargo buildings and attached to weighs and the discharge platforms. PDAs with camera and support to a WiFi network are provided to the inspectors and access points are installed throughout the discharge area to allow effective confirmations of unload actions and the acquisition of pictures for future audit. Broadband radio equipments are used to establish efficient communication links between the weighs and cargo buildings which are usually located very far from each other in the field. A web application software was especially developed to enable robust communication between the equipments for efficient device management, data processing and reports generation to the operating personal. The system was deployed in a cargo station of a Brazilian seashore port. The obtained results prove the effectiveness of the proposed system.
Resumo:
Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.
Resumo:
Estuaries are perhaps the most threatened environments in the coastal fringe; the coincidence of high natural value and attractiveness for human use has led to conflicts between conservation and development. These conflicts occur in the Sado Estuary since its location is near the industrialised zone of Peninsula of Setúbal and at the same time, a great part of the Estuary is classified as a Natural Reserve due to its high biodiversity. These facts led us to the need of implementing a model of environmental management and quality assessment, based on methodologies that enable the assessment of the Sado Estuary quality and evaluation of the human pressures in the estuary. These methodologies are based on indicators that can better depict the state of the environment and not necessarily all that could be measured or analysed. Sediments have always been considered as an important temporary source of some compounds or a sink for other type of materials or an interface where a great diversity of biogeochemical transformations occur. For all this they are of great importance in the formulation of coastal management system. Many authors have been using sediments to monitor aquatic contamination, showing great advantages when compared to the sampling of the traditional water column. The main objective of this thesis was to develop an estuary environmental management framework applied to Sado Estuary using the DPSIR Model (EMMSado), including data collection, data processing and data analysis. The support infrastructure of EMMSado were a set of spatially contiguous and homogeneous regions of sediment structure (management units). The environmental quality of the estuary was assessed through the sediment quality assessment and integrated in a preliminary stage with the human pressure for development. Besides the earlier explained advantages, studying the quality of the estuary mainly based on the indicators and indexes of the sediment compartment also turns this methodology easier, faster and human and financial resource saving. These are essential factors to an efficient environmental management of coastal areas. Data management, visualization, processing and analysis was obtained through the combined use of indicators and indices, sampling optimization techniques, Geographical Information Systems, remote sensing, statistics for spatial data, Global Positioning Systems and best expert judgments. As a global conclusion, from the nineteen management units delineated and analyzed three showed no ecological risk (18.5 % of the study area). The areas of more concern (5.6 % of the study area) are located in the North Channel and are under strong human pressure mainly due to industrial activities. These areas have also low hydrodynamics and are, thus associated with high levels of deposition. In particular the areas near Lisnave and Eurominas industries can also accumulate the contamination coming from Águas de Moura Channel, since particles coming from that channel can settle down in that area due to residual flow. In these areas the contaminants of concern, from those analyzed, are the heavy metals and metalloids (Cd, Cu, Zn and As exceeded the PEL guidelines) and the pesticides BHC isomers, heptachlor, isodrin, DDT and metabolits, endosulfan and endrin. In the remain management units (76 % of the study area) there is a moderate impact potential of occurrence of adverse ecological effects and in some of these areas no stress agents could be identified. This emphasizes the need for further research, since unmeasured chemicals may be causing or contributing to these adverse effects. Special attention must be taken to the units with moderate impact potential of occurrence of adverse ecological effects, located inside the natural reserve. Non-point source pollution coming from agriculture and aquaculture activities also seem to contribute with important pollution load into the estuary entering from Águas de Moura Channel. This pressure is expressed in a moderate impact potential for ecological risk existent in the areas near the entrance of this Channel. Pressures may also came from Alcácer Channel although they were not quantified in this study. The management framework presented here, including all the methodological tools may be applied and tested in other estuarine ecosystems, which will also allow a comparison between estuarine ecosystems in other parts of the globe.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take individual sensor readings, however, in many cases, it is relevant to compute aggregated quantities of these readings. In fact, the minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. In this context, we propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.
Resumo:
Hydraulic binders play a vital role in the economic and social development because they are essential components of concrete, the most widely used construction material. Nowadays, Portland cement is the most predominantly used hydraulic binder due to its properties and widespread availability. Cement manufacture consumes large amount of non-renewable raw materials and energy, and it is a carbon-intensive process. Many efforts are, therefore, being undertaken towards the developing “greener” hydraulic binders. Concomitantly, binders must also correspond to market demand in terms of performance and aesthetic as well as fulfill mandatory regulations. In order to pursue these goals, different approaches have been followed including the improvement of the cement manufacturing process, production of blended cements, and testing innovative hydraulic binders with a different chemistry. This chapter presents a brief history of hydraulic binder’s discovery and use as well as the environmental and economic context of cement industry. It, then, describes the chemistry and properties of currently most used hydraulic binders—common cements and hydraulic limes—and that of the more promising binders for future applications, namely special Portland cements, aluminous cements, calcium sulfoaluminate cements, and alkali-activated cements.