397 resultados para Probiotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technologies of metagenomics and metabolomics are broadening our knowledge of the roles the human gut microbiota play in health and disease. For many years now, probiotics and prebiotics have been included in foods for their health benefits; however, we have only recently begun to understand their modes of action. This review highlights recent advances in deciphering the mechanisms of probiosis and prebiosis, and describes how this knowledge could be transferred to select for enhancing functional foods targeting different populations. A special focus will be given to the addition of prebiotics and probiotics in functional foods for infants and seniors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, Lactobacillus fermentum ME-3, Lactobacillus plantarum WCFS1, Lactobacillus paracasei 8700:2 or Bifidobacterium longum 46) were added to 24-h pH-controlled anaerobic faecal batch cultures. The prebiotic and probiotic components were also tested alone to determine their respective role within the synbiotic for modulation of the faecal microbiota. Effects upon major groups of the microbiota were evaluated using FISH. Rifampicin variant probiotic strains were used to assess probiotic levels. Synbiotic and prebiotics increased bifidobacteria and the Eubacterium rectale-Clostridium coccoides group. Lower levels of Escherichia coli were retrieved with these combinations after 5 and 10 h of fermentation. Probiotics alone had little effect upon the groups, however. Multivariate analysis revealed that the effect of synbiotics differed from the prebiotics as higher levels of Lactobacillus-Enterococcus were observed when the probiotic was stimulated by the prebiotic component. Here, the synbiotic approach was more effective than prebiotic or probiotic alone to modulate the gut microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gut bacteria can be categorised as being either beneficial or potentially pathogenic due to their metabolic activities and fermentation end-products. Health-promoting effects of the microflora may include immunostimulation, improved digestion and absorption, vitamin synthesis, inhibition of the growth of potential pathogens and lowering of gas distension. Detrimental effects are carcinogen production, intestinal putrefaction, toxin production, diarrhoea/constipation and intestinal infections. Certain indigenous bacteria such as bifidobacteria and lactobacilli are considered to be examples of health-promoting constituents of the microflora. They may aid digestion of lactose in lactose-intolerant individuals, reduce diarrhoea, help resist infections and assist in inflammatory conditions. Probiotics, prebiotics and synbiotics are functional foods that fortify the lactate producing microflora of the human or animal gut.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activities of the bacteria resident in the colon of companion animals can have an impact upon the health of the host. Our understanding of this microbial ecosystem is presently increasing due to the development of DNA-based microbiological tools that allow identification and enumeration of nonculturable microorganisms. These techniques are changing our view of the bacteria that live in the gut, and they are facilitating dietary-intervention approaches to modulate the colonic ecosystem. This is generally achieved by the feeding of either live bacteria (probiotics) or nondigestible oligosaccharides (prebiotics) that selectively feed the indigenous probiotics. Feeding studies with a Lactobacillus acidophilus probiotic have shown positive effects on carriage of Clostridium spp. in canines and on recovery from Campylobacter spp. infection in felines. Immune function was improved in both species. Prebiotic feeding studies with lactosucrose and fructo-oligosaccharides in both cats and dogs have shown positive effects on the microflora balance. Recently synbiotic forms (a probiotic together with a prebiotic) targeted at canines have been developed that show promise as dietary-intervention tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Animal studies suggest that prebiotics and probiotics exert protective effects against tumor development in the colon, but human data supporting this suggestion are weak. Objective: The objective was to verify whether the prebiotic concept (selective interaction with colonic flora of nondigested carbohydrates) as induced by a synbiotic preparation-oligofructose-enriched inulin (SYN1) + Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (BB12)-is able to reduce the risk of colon cancer in humans. Design: The 12-wk randomized, double-blind, placebo-controlled trial of a synbiotic food composed of the prebiotic SYN1 and probiotics LGG and BB12 was conducted in 37 colon cancer patients and 43 polypectomized patients. Fecal and blood samples were obtained before, during, and after the intervention, and colorectal biopsy samples were obtained before and after the intervention. The effect of synbiotic consumption on a battery of intermediate biomarkers for colon cancer was examined. Results: Synbiotic intervention resulted in significant changes in fecal flora: Bifidobacterium and Lactobacillus increased and Clostridium perfringens decreased. The intervention significantly reduced colorectal proliferation and the capacity of fecal water to induce necrosis in colonic cells and improve epithelial barrier function in polypectomized patients. Genotoxicity assays of colonic biopsy samples indicated a decreased exposure to genotoxins in polypectomized patients at the end of the intervention period. Synbiotic consumption prevented an increased secretion of interleukin 2 by peripheral blood mononuclear cells in the polypectomized patients and increased the production of interferon gamma in the cancer patients. Conclusions: Several colorectal cancer biomarkers can be altered favorably by synbiotic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a leading cause of cancer incidence worldwide. Lifestyle factors, especially dietary intake, affect the risk of CRC development. Suitable risk biomarkers are required in order to assess the effect that specific dietary components have on CRC risk. The relationship between dietary intake and indicators of fecal water activity has been assessed using cell and animal models as well as human studies. This review summarizes the literature on fecal water and dietary components with a view to establishing further the potential role of fecal water as a source of CRC risk biomarkers. The literature indicates that fecal water activity markers are affected by specific dietary components linked with CRC risk: red meat, saturated fats, bile acids, and fatty acids are associated with an increase in fecal water toxicity, while the converse appears to be true for calcium, probiotics, and prebiotics. However, it must be acknowledged that the study of fecal water is still in its infancy and a number of issues need to be addressed before its usefulness can be truly gauged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An anaerobic three-vessel continuous-flow culture system, which models the three major anatomical regions of the human colon, was used to study the persistence of Candida albicans in the presence of a faecal microbiota. During steady state conditions, overgrowth of C. albicans was prevented by commensal bacteria indigenous to the system. However antibiotics, such as tetracycline have the ability to disrupt the bacterial populations within the gut. Thus, colonization resistance can be compromised and overgrowth of undesirable microorganisms like C. albicans can then occur. In this study, growth of C. albicans was not observed in the presence of an established faecal microbiota. However, following the addition of tetracycline to the growth medium, significant growth of C. albicans occurred. A probiotic Lactobacillus plantarum LPK culture was added to the system to investigate whether this organism had any effects upon the Candida populations. Although C. albicans was not completely eradicated in the presence of this bacterium, cell counts were markedly reduced, indicating a compromised physiological function. This study shows that the normal gut flora can exert 'natural' resistance to C. albicans, however this may be diminished during antibiotic intake. The use of probiotics can help fortify natural resistance.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin is a prebiotic food ingredient, which suppresses colon tumour growth and development in rats. In the gut lumen, it is fermented to lactic acid and short chain fatty acids (SCFA). Of these, butyrate has suppressing agent activities, but little is known concerning cellular responses to complex fermentation samples. To investigate the effects of fermentation products of insulin on cellular responses related to colon carcinogenesis. Fermentations were performed in anaerobic batch cultures or in a three-stage fermentation model that simulates conditions in colon-segments (proximal, transverse, distal). Substrate was insulin enriched with oligofructose (Raftilose® Synergy1), fermented with probiotics (Bifidobacterium lactis Bb12, Lactobacillus rhamnosus GG), and/or faecal inocula. HT29 or CaCo-2 cells were incubated with supernatants of the fermented samples (2.5%-25% v/v, 24-72 hours). Cellular parameters of survival, differentiation, tumour progression, and invasive growth were determined. Fermentation supernatants derived from probiotics and Synergy1 were more effective than with glucose. The additional fermentation with faecal slurries produced supernatants with lower toxicity, higher SCFA contents, and distinct cellular functions. The supernatant derived from the gut model vessel representing the distal colon, was most effective for all parameters, probably on account of higher butyrate-concentrations. Biological effects of insulin upon colon cells may be mediated not only by growth stimulation of the lactic acid-producing bacteria and/or production of butyrate, but also by other bacteria and products of the gut lumen. These newly reported properties of the supernatants to inhibit growth and metastases in colon tumour cells are important mechanisms of tumour suppression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the past 20 years, the focuses of public health strategies for reducing the risk of cardiovascular disease (CVD) have been aimed at lowering cholesterol levels. However, recent findings have highlighted not only cholesterol but also triacylglycerol as a lipid risk factor for CVD. Dietary strategies which are able to reduce these Circulating lipid levels, but which are able to offer longterm efficacy comparable with effective drug treatments, are currently being sought. One dietary strategy that has been proposed to benefit the lipid profile involves the supplementation of the diet with probiotics (Part 1) prebiotics and synbiotics (Part 2), which are mechanisms to improve the health of the host by supplementation and/or fortification of certain health promoting gut bacteria. Probiotics in the form of fermented milk products have been shown to have cholesterol-lowering properties, whereas non-digestible fermentable prebiotics have been shown to reduce triacylglycerol levels in animal studies, However, in human studies, there have been inconsistent findings with respect to changes in lipid levels with both prebiotics and probiotics although on the whole there have been favourable outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.