951 resultados para Principal component analysis (PCA)
Resumo:
The reported prevalence of late-life depressive symptoms varies widely between studies, a finding that might be attributed to cultural as well as methodological factors. The EURO-D scale was developed to allow valid comparison of prevalence and risk associations between European countries. This study used Confirmatory Factor Analysis (CFA) and Rasch models to assess whether the goal of measurement invariance had been achieved; using EURO-D scale data collected in 10 European countries as part of the Survey of Health, Ageing and Retirement in Europe (SHARE) (n = 22,777). The results suggested a two-factor solution (Affective Suffering and Motivation) after Principal Component Analysis (PCA) in 9 of the 10 countries. With CFA, in all countries, the two-factor solution had better overall goodness-of-fit than the one-factor solution. However, only the Affective Suffering subscale was equivalent across countries, while the Motivation subscale was not. The Rasch model indicated that the EURO-D was a hierarchical scale. While the calibration pattern was similar across countries, between countries agreement in item calibrations was stronger for the items loading on the affective suffering than the motivation factor. In conclusion, there is evidence to support the EURO-D as either a uni-dimensional or bi-dimensional scale measure of depressive symptoms in late-life across European countries. The Affective Suffering sub-component had more robust cross-cultural validity than the Motivation sub-component.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Universidad Politécnica de Madrid, Espanya, entre setembre i o desembre del 2007. Actualment la indústria aeroespacial i aeronàutica té com prioritat millorar la fiabilitat de las seves estructures a través del desenvolupament de nous sistemes per a la monitorització i detecció d’impactes. Hi ha diverses tècniques potencialment útils, i la seva aplicabilitat en una situació particular depèn críticament de la mida del defecte que permet l’estructura. Qualsevol defecte canviarà la resposta vibratòria de l’element estructural, així com el transitori de l’ona que es propaga per l’estructura elàstica. Correlacionar aquests canvis, que poden ser detectats experimentalment amb l’ocurrència del defecte, la seva localització i quantificació, és un problema molt complex. Aquest treball explora l’ús de l'Anàlisis de Components Principals (Principal Component Analysis - PCA-) basat en la formulació dels estadístics T2 i Q per tal de detectar i distingir els defectes a l'estructura, tot correlacionant els seus canvis a la resposta vibratòria. L’estructura utilitzada per l’estudi és l’ala d’una turbina d’un avió comercial. Aquesta ala s’excita en un extrem utilitzant un vibrador, i a la qual s'han adherit set sensors PZT a la superfície. S'aplica un senyal conegut i s'analitzen les respostes. Es construeix un model PCA utilitzant dades de l’estructura sense defecte. Per tal de provar el model, s'adhereix un tros d’alumini en quatre posicions diferents. Les dades dels assajos de l'estructura amb defecte es projecten sobre el model. Les components principals i les distàncies de Q-residual i T2-Hotelling s'utilitzaran per a l'anàlisi de les incidències. Q-residual indica com de bé s'adiu cadascuna de les mostres al model PCA, ja que és una mesura de la diferència, o residu, entre la mostra i la seva projecció sobre les components principals retingudes en el model. La distància T2-Hotelling és una mesura de la variació de cada mostra dins del model PCA, o el que vindria a ser el mateix, la distància al centre del model PCA.
Resumo:
This study examines how structural determinants influence intermediary factors of child health inequities and how they operate through the communities where children live. In particular, we explore individual, family and community level characteristics associated with a composite indicator that quantitatively measures intermediary determinants of early childhood health in Colombia. We use data from the 2010 Colombian Demographic and Health Survey (DHS). Adopting the conceptual framework of the Commission on Social Determinants of Health (CSDH), three dimensions related to child health are represented in the index: behavioural factors, psychosocial factors and health system. In order to generate the weight of the variables and take into account the discrete nature of the data, principal component analysis (PCA) using polychoric correlations are employed in the index construction. Weighted multilevel models are used to examine community effects. The results show that the effect of household’s SES is attenuated when community characteristics are included, indicating the importance that the level of community development may have in mediating individual and family characteristics. The findings indicate that there is a significant variance in intermediary determinants of child health between-community, especially for those determinants linked to the health system, even after controlling for individual, family and community characteristics. These results likely reflect that whilst the community context can exert a greater influence on intermediary factors linked directly to health, in the case of psychosocial factors and the parent’s behaviours, the family context can be more important. This underlines the importance of distinguishing between community and family intervention programmes.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
BACKGROUND Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. METHODOLOGY/PRINCIPAL FINDINGS We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. CONCLUSION/SIGNIFICANCE The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.
Resumo:
Objective: To assess the factorial validity of the Portuguese version of the Maslach Burnout Inventory - Human Services Survey (MBI-HSS). Methods: Between November 2010 and November 2011 a Portuguese version of the MBI-HSS was applied to 151 Portuguese family doctors (55% women, median age 54 years). The factorial structure of the MBI-HSS was examined by principal component analysis (PCA) and confirmatory factor analysis (CFA). Internal consistency estimates of the MBI-HSS were determined with Cronbach's alpha. Results: The fit of the hypothesized three-factor model to the data was superior to the alternative two-factor and four-factor models. CFA supported MBI-HSS as an acceptable measure to evaluate burnout and deletion of items 12 and 16 improved the goodness of fit of the model. In PCA, the three-factor model explained 50.58% of the variance and the four-factor model did not lead to understandable components. Item 12 was also found to be problematic in PCA. The Cronbach's alpha was satisfactory for emotional exhaustion (alpha=0.90), lack of personal accomplishment (alpha=0.73), and depersonalization (alpha=0.64). Conclusion: The Portuguese version of the MBI-HSS was found to be reliable to measure burnout among Portuguese medical doctors. We also recommend the deletion of items 12 and 16 from the MBI-HSS.
Resumo:
This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (Csingle bondH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences. Globally, Py-GC/MS may show a high potential of discrimination on all samples but the results are highly dependent on the specific instrumental conditions used. Finally, the discrimination of samples when data was interpreted visually as compared to statistically using principal component analysis (PCA) yielded very similar results. PCA increases sensitivity and could perform better on specific samples, but one first has to ensure that all non-informative variation (baseline deviation) is eliminated by applying correct pre-treatments. Statistical treatments can be used on a large data set and, when combined with an expert's opinion, will provide more objective criteria for decision making.
Resumo:
The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES), a 19-item instrument developed to assess readiness to change alcohol use among individuals presenting for specialized alcohol treatment, has been used in various populations and settings. Its factor structure and concurrent validity has been described for specialized alcohol treatment settings and primary care. The purpose of this study was to determine the factor structure and concurrent validity of the SOCRATES among medical inpatients with unhealthy alcohol use not seeking help for specialized alcohol treatment. The subjects were 337 medical inpatients with unhealthy alcohol use, identified during their hospital stay. Most of them had alcohol dependence (76%). We performed an Alpha Factor Analysis (AFA) and Principal Component Analysis (PCA) of the 19 SOCRATES items, and forced 3 factors and 2 components, in order to replicate findings from Miller and Tonigan (Miller, W. R., & Tonigan, J. S., (1996). Assessing drinkers' motivations for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behavior, 10, 81-89.) and Maisto et al. (Maisto, S. A., Conigliaro, J., McNeil, M., Kraemer, K., O'Connor, M., & Kelley, M. E., (1999). Factor structure of the SOCRATES in a sample of primary care patients. Addictive Behavior, 24(6), 879-892.). Our analysis supported the view that the 2 component solution proposed by Maisto et al. (Maisto, S.A., Conigliaro, J., McNeil, M., Kraemer, K., O'Connor, M., & Kelley, M.E., (1999). Factor structure of the SOCRATES in a sample of primary care patients. Addictive Behavior, 24(6), 879-892.) is more appropriate for our data than the 3 factor solution proposed by Miller and Tonigan (Miller, W. R., & Tonigan, J. S., (1996). Assessing drinkers' motivations for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behavior, 10, 81-89.). The first component measured Perception of Problems and was more strongly correlated with severity of alcohol-related consequences, presence of alcohol dependence, and alcohol consumption levels (average number of drinks per day and total number of binge drinking days over the past 30 days) compared to the second component measuring Taking Action. Our findings support the view that the SOCRATES is comprised of two important readiness constructs in general medical patients identified by screening.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.). Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil), on family farms producing maize (Zea mays L.), sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS) and subsequently principal component analysis (PCA) to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.
Resumo:
The correlation between the species composition of pasture communities and soil properties in Plana de Vic has been studied using two multivariate methods, Correspondence Analysis (CA) for the vegetation data and Principal Component Analysis (PCA) for the soil data. To analyse the pastures, we took 144 vegetation relevés (comprising 201 species) that have been classified into 10 phytocoenological communities elsewhere. Most of these communities are almost entirely built up by perennials, ranging from xerophilous, clearly Mediterranean, to mesophilous, related to medium-European pastures, but a few occurring in shallow soils are dominated by therophytes. As for the soil properties, we analysed texture, pH, depth, bulk density, organic matter, C/N ratio and the carbonates content of 25 samples, correspondingto representative relevés of the communities studied.
Resumo:
Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.
Resumo:
Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.
Resumo:
The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.