998 resultados para Primer walking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design aspects and comparative performances of different laboratory formulations of wash primers were studied under laboratory and field conditions with reference to scratch hardness, flexibility, stability, resistance to corrosion and adhesiveness. The different formulations of single pack wash primers tested have shown superiority of the formulation prepared out of “mowital” and that it is comparable in performance to double pack wash primer.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8 weeks feeding trial was conducted in a static indoor rearing system to investigate protein to energy ratio (PIE ratio) in walking catfish Clarias batrachus. Six fishmeal based diets of two protein levels (25 and 35%), each with three lipid levels (5, 10 and 15%) resulted in P/E ratios ranging from 13.57 to 21.97 mg protein kJˉ¹ gross energy (GE) were fed to 50 fish in triplicate. Fish were fed 6% of their body weight three times per day adjusted fortnightly. Significantly higher (p<0.05) growth rates in terms of weight gain, % weight gain and specific growth rate (SGR) were evident in fish fed with higher protein diet. The highest growth rate was found by fish fed 35% protein, 17.06 kJˉ¹GE with a P/E ratio of 20.55 mg protein kJˉ¹GE. Significantly better (p<0.05) feed conversion ratio (FCR) was also evident in fish fed with higher protein diet and best FCR was found by fish fed 35% protein, 10% lipid, 17.06 kJˉ¹GE with a P/E ratio of 20.55 mg protein kJˉ¹GE. Significantly indifferent (p>0.05) values of protein utilisation were found in between the both (higher and lower) protein diets. Higher lipid deposition (p<0.05) in whole body was observed with increasing dietary lipid level at each protein diet and as higher (p<0.05) for the lower protein diets. The study reveals that C. batrachus performed best the diet containing 35%, 17.06 kJ gˉ¹ and 20.55 mg protein kJ gˉ¹ GE protein, gross energy and P/E ratio respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a portable recording system and methods for obtaining chronic recordings of single units and tracking rhesus monkey behavior in an open field. The integrated system consists of four major components: (1) microelectrode assembly; (2) h

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a constructive control design for stabilization of non-periodic trajectories of underactuated robots. An important example of such a system is an underactuated "dynamic walking" biped robot traversing rough or uneven terrain. The stabilization problem is inherently challenging due to the nonlinearity, open-loop instability, hybrid (impact) dynamics, and target motions which are not known in advance. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents "transversal" dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design, providing exponential orbital stability of the target trajectory of the original nonlinear system. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to a wide variety of hybrid nonlinear systems. © The Author(s) 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking" mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain. © 2010 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a constructive control design for stabilization of non-periodic trajectories of underactuated mechanical systems. An important example of such a system is an underactuated "dynamic walking" biped robot walking over rough terrain. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to higher degree-of-freedom robots over arbitrary terrain and other impulsive mechanical systems. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive dynamics plays an important role in legged locomotion of the biological systems. The use of passive dynamics provides a number of advantages in legged locomotion such as energy efficiency, self-stabilization against disturbances, and generating gait patterns and behavioral diversity. Inspired from the theoretical and experimental studies in biomechanics, this paper presents a novel bipedal locomotion model for walking and running behavior which uses compliant legs. This model consists of three-segment legs, two servomotors, and four passive joints that are constrained by eight tension springs. The self-organization of two gait patterns (walking and running) is demonstrated in simulation and in a real-world robot. The analysis of joint kinematics and ground reaction force explains how a minimalistic control architecture can exploit the particular leg design for generating different gait patterns. Moreover, it is shown how the proposed model can be extended for controlling locomotion velocity and gait patterns with the simplest control architecture. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been the dream to build robots which could walk and run with ease. To date, the stance phase of walking robots has been characterized by the use of either straight, rigid legs, as is the case of passive walkers, or by the use of articulated, kinematically-driven legs. In contrast, the design of most hopping or running robots is based on compliant legs which exhibit quite natural behavior during locomotion. © 2006 Springer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grovier, Kelly, 'Shades of the Prison-House': 'Walking' Stewart, Michel Foucault and the Making of Wordsworth's 'two consciousnesses'' Studies in Romanticism (2005) 44 (3) pp.341-66 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project examines the challenges military chaplains face when leading Gospel services in the United States Air Force in both domestic and deployed locations. It argues that some chaplains assigned to Gospel services do not have the ministry skills set to lead them effectively. Through quantitative and qualitative research methods involving surveys of 30 military chaplains, lay leaders and parishioners, and follow-up interviews to explore critical issues identified by leaders and congregants alike, this project develops a Gospel service manual. This instructional primer outlines the historical evolution of the Gospel service and addresses its integral elements of worship and challenges that chaplains need to understand to meet the worship needs of multicultural and ecumenical military congregations.