974 resultados para Pre-implantation genetic diagnosis
Resumo:
A total of 106 women with vaginitis in Nicaragua were studied. The positive rate for the identification of Candida species was 41% (44 positive cultures out of 106 women with vaginitis). The sensitivity of microscopic examination of wet mount with the potassium hydroxide (KOH) was 61% and 70% with Gram's stain when using the culture of vaginal fluid as gold standard for diagnosis of candidiasis. Among the 44 positives cultures, isolated species of yeast from vaginal swabs were C. albicans (59%), C. tropicalis (23%), C. glabrata (14%) and C. krusei (4%). This study reports the first characterization of 26 C. albicans stocks from Nicaragua by the random amplified polymorphic DNA method. The genetic analysis in this small C. albicans population showed the existence of linkage disequilibrium, which is consistent with the hypothesis that C. albicans undergoes a clonal propagation.
Resumo:
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.
Resumo:
ABSTRACT: Invasive candidiasis is a frequent life-threatening complication in critically ill patients. Early diagnosis followed by prompt treatment aimed at improving outcome by minimizing unnecessary antifungal use remains a major challenge in the ICU setting. Timely patient selection thus plays a key role for clinically efficient and cost-effective management. Approaches combining clinical risk factors and Candida colonization data have improved our ability to identify such patients early. While the negative predictive value of scores and predicting rules is up to 95 to 99%, the positive predictive value is much lower, ranging between 10 and 60%. Accordingly, if a positive score or rule is used to guide the start of antifungal therapy, many patients may be treated unnecessarily. Candida biomarkers display higher positive predictive values; however, they lack sensitivity and are thus not able to identify all cases of invasive candidiasis. The (1→3)-β-D-glucan (BG) assay, a panfungal antigen test, is recommended as a complementary tool for the diagnosis of invasive mycoses in high-risk hemato-oncological patients. Its role in the more heterogeneous ICU population remains to be defined. More efficient clinical selection strategies combined with performant laboratory tools are needed in order to treat the right patients at the right time by keeping costs of screening and therapy as low as possible. The new approach proposed by Posteraro and colleagues in the previous issue of Critical Care meets these requirements. A single positive BG value in medical patients admitted to the ICU with sepsis and expected to stay for more than 5 days preceded the documentation of candidemia by 1 to 3 days with an unprecedented diagnostic accuracy. Applying this one-point fungal screening on a selected subset of ICU patients with an estimated 15 to 20% risk of developing candidemia is an appealing and potentially cost-effective approach. If confirmed by multicenter investigations, and extended to surgical patients at high risk of invasive candidiasis after abdominal surgery, this Bayesian-based risk stratification approach aimed at maximizing clinical efficiency by minimizing health care resource utilization may substantially simplify the management of critically ill patients at risk of invasive candidiasis.
Resumo:
CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.
Resumo:
Purpose: To describe the clinical, histologic and genetic findings of corneal opacities in the trisomy 8 mosaic syndrome. Methods: 3 children aged 8 years (Patients A), 6 years (Patients B) and 1 month (Patients C) respectively, were referred with corneal opacities for ophthalmologic evaluation. The 2 older patients had been previously diagnosed with trisomy 8 mosaicism, while the third was diagnosed after the ocular examination. Automated lamellar keratoplasty (ALTK) was performed on the most amblyopic eye. Histopathologic analysis with immunohistochemical markers and cytogenetic studies by FISH using haploid probes for chromosome 8 and chromosome 16 (control) were performed on the excised corneal lesion. Results: All patients presented vascularized corneal opacities involving the superficial stroma, and amblyopia with a bilateral involvement in two of them (Patients A and B). Post-operative follow-up (range 6-20 months) was satisfactory, with the graft remaining clear and improved visual acuity, allowing iso-acuity and stereoscopy in the one month old child (Patients C). The clinically observed corneal opacities corresponded histopathologically to the replacement of the normal anterior corneal stroma by a choristomatous loose richly vascularized connective tissue containing mucopolysacharides. Bowman's membrane was absent. There were no adnexal structures. The overlaying epithelium expressed keratin 3 in all three cases. Keratin 19 was found in the suprabasal epithelial cells in one case but was absent in the other cases. There were no expression of keratin 7 and 1 as well as MUC5AC in the epithelial cells. FISH analysis from 100 interphase cells of the affected tissue and normal conjontival probe revealed normal diploid cells. Conclusions: In this series, the corneal opacities associated with trisomy 8 mosaic syndrome share a common clinical, histopathological and genetic features. ALTK should be considered at diagnosis to prevent amblyopia in these children.
Resumo:
Genetic disorders involving the skeletal system arise through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their variety. The Nosology and Classification of Genetic Skeletal Disorders provides an overview of recognized diagnostic entities and groups them by clinical and radiographic features and molecular pathogenesis. The aim is to provide the Genetics, Pediatrics and Radiology community with a list of recognized genetic skeletal disorders that can be of help in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists interested in skeletal biology. In the 2010 revision, 456 conditions were included and placed in 40 groups defined by molecular, biochemical, and/or radiographic criteria. Of these conditions, 316 were associated with mutations in one or more of 226 different genes, ranging from common, recurrent mutations to "private" found in single families or individuals. Thus, the Nosology is a hybrid between a list of clinically defined disorders, waiting for molecular clarification, and an annotated database documenting the phenotypic spectrum produced by mutations in a given gene. The Nosology should be useful for the diagnosis of patients with genetic skeletal diseases, particularly in view of the information flood expected with the novel sequencing technologies; in the delineation of clinical entities and novel disorders, by providing an overview of established nosologic entities; and for scientists looking for the clinical correlates of genes, proteins and pathways involved in skeletal biology. © 2011 Wiley-Liss, Inc.
Resumo:
The hepatitis A virus (HAV) HAF-203 strain was isolated from an acute case of HAV infection. The primary isolation of HAF-203 in Brazil and its adaptation to the FRhK-4 cell lineage allowed the production of large amounts of viral particles enabling molecular characterization of the first HAV isolate in Brazil. The aim of our study was to determine the nucleotide sequence of the HAF-203 strain genome, compare it to other HAV genomes and highlight its genetic variability. The complete nucleotide sequence of the HAF-203 strain (7472 nucleotides) was compared to those obtained earlier by others for other HAV isolates. These analyses revealed 19 HAF-specific nucleotide sequence differences with 10 amino acid substitutions. Most of the non-conservative changes were located at VP1, 2C, and 3D genes, but the 3B region was the most variable. The availability of HAF-203 complementary DNA was useful for the production of the recombinant VP1 protein, which is a major determinant of viral infectivity. This recombinant protein was shown by enzyme-linked immunoassay and blotting, to be immunogenic and resemble the native protein, therefore suggesting its value as a reagent for incorporation into diagnostic tests.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.
Resumo:
The detection of specific DNA sequences by polymerase chain reaction (PCR) has proved extremely valuable for the analysis of genetic disorders and the diagnosis of a variety of infectious disease pathogens. However, the application to the detection of Schistosoma mansoni is rare, despite a recommendation of the World Health Organization that a major focus of research on schistosomiasis should be on the development and evaluation of new strategies and tools for control of the disease. In this context, a few studies were published for the detection of the parasite in snails, monitoring of cercariae in water bodies, and diagnosis of human infection. The present minireview describes sensitive and specific PCR based systems to detect S. mansoni, indicating possible applications in the detection of snail infection, monitoring of transmission sites, and diagnosis of human infection.
Resumo:
Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.
Resumo:
Evaluation and management of renal cysts Renal cystic diseases are a heterogeneous group of conditions including heritable, developmental, and acquired disorders. They are united by the presence of microscopic or giant fluid-filled cavities and affect both children and adults. The definitive diagnosis of many of the renal cystic diseases requires clinical, radiological, pathological, and genetic analysis. A precise diagnosis is essential for prognosis, treatment, and future genetic counselling.
Resumo:
OBJECTIVE: To explore the potential of deep HIV-1 sequencing for adding clinically relevant information relative to viral population sequencing in heavily pre-treated HIV-1-infected subjects. METHODS: In a proof-of-concept study, deep sequencing was compared to population sequencing in HIV-1-infected individuals with previous triple-class virological failure who also developed virologic failure to deep salvage therapy including, at least, darunavir, tipranavir, etravirine or raltegravir. Viral susceptibility was inferred before salvage therapy initiation and at virological failure using deep and population sequencing genotypes interpreted with the HIVdb, Rega and ANRS algorithms. The threshold level for mutant detection with deep sequencing was 1%. RESULTS: 7 subjects with previous exposure to a median of 15 antiretrovirals during a median of 13 years were included. Deep salvage therapy included darunavir, tipranavir, etravirine or raltegravir in 4, 2, 2 and 5 subjects, respectively. Self-reported treatment adherence was adequate in 4 and partial in 2; one individual underwent treatment interruption during follow-up. Deep sequencing detected all mutations found by population sequencing and identified additional resistance mutations in all but one individual, predominantly after virological failure to deep salvage therapy. Additional genotypic information led to consistent decreases in predicted susceptibility to etravirine, efavirenz, nucleoside reverse transcriptase inhibitors and indinavir in 2, 1, 2 and 1 subject, respectively. Deep sequencing data did not consistently modify the susceptibility predictions achieved with population sequencing for darunavir, tipranavir or raltegravir. CONCLUSIONS: In this subset of heavily pre-treated individuals, deep sequencing improved the assessment of genotypic resistance to etravirine, but did not consistently provide additional information on darunavir, tipranavir or raltegravir susceptibility. These data may inform the design of future studies addressing the clinical value of minority drug-resistant variants in treatment-experienced subjects.
Resumo:
Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.