869 resultados para Power system reliability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a methodology for solving a linear system of equations on vector computer. The methodology combines direct and inverse factors. The decomposition and implementation of the direct solution in a CRAY Y-MPZE/232, and the performance results are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new algebraic-graph method for identification of islanding in power system grids is proposed. The proposed method identifies all the possible cases of islanding, due to the loss of a equipment, by means of a factorization of the bus-branch incidence matrix. The main features of this new method include: (i) simple implementation, (ii) high speed, (iii) real-time adaptability, (iv) identification of all islanding cases and (v) identification of the buses that compose each island in case of island formation. The method was successfully tested on large-scale systems such as the reduced south Brazilian system (45 buses/72 branches) and the south-southeast Brazilian system (810 buses/1340 branches). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power system is presented. Based on the Matlab environment, the simulation is built by using Simulink and SimPowerSystem. There are four parts in a household solar system, solar cell, MPPT system, battery and power consumer. Solar cell and MPPT system are been studied and analyzed individually. The system with MPPT generates 30% more energy than the system without MPPT. After simulating the household system, it is can be seen that the power which generated by the system is 40.392 kWh per sunny day. By combining the power generated by the system and the price of the electric power, 8.42 years are need for the system to achieve a balance of income and expenditure when weather condition is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Wearable Power System (WPS) is a portable power source utilized primarily to power the modern soldier’s electronic equipment. Such a system has to satisfy output power demands in the range of 20 W...200 W, specified as a 4-day mission profile and has a weight limit of 4 kg. To meet these demands, an optimization of a WPS, comprising an internal combustion (IC) engine, permanent magnetic three-phase electrical motor/generator, inverter, Li-batteries, DC-DC converters, and controller, is performed in this paper. The mechanical energy extracted from the fuel by IC engine is transferred to the generator that is used to recharge the battery and provide the power to the electrical output load. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and to minimize the system weight. To provide the second output voltage level of 14 VDC, a separate DC-DC converter is connected between the battery and the load, and optimized for the specified mission profile. A prototype of the WPS based on the optimization presented in the paper results in a total system weight of 3.9 kg and fulfils the mission profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los análisis de fiabilidad representan una herramienta adecuada para contemplar las incertidumbres inherentes que existen en los parámetros geotécnicos. En esta Tesis Doctoral se desarrolla una metodología basada en una linealización sencilla, que emplea aproximaciones de primer o segundo orden, para evaluar eficientemente la fiabilidad del sistema en los problemas geotécnicos. En primer lugar, se emplean diferentes métodos para analizar la fiabilidad de dos aspectos propios del diseño de los túneles: la estabilidad del frente y el comportamiento del sostenimiento. Se aplican varias metodologías de fiabilidad — el Método de Fiabilidad de Primer Orden (FORM), el Método de Fiabilidad de Segundo Orden (SORM) y el Muestreo por Importancia (IS). Los resultados muestran que los tipos de distribución y las estructuras de correlación consideradas para todas las variables aleatorias tienen una influencia significativa en los resultados de fiabilidad, lo cual remarca la importancia de una adecuada caracterización de las incertidumbres geotécnicas en las aplicaciones prácticas. Los resultados también muestran que tanto el FORM como el SORM pueden emplearse para estimar la fiabilidad del sostenimiento de un túnel y que el SORM puede mejorar el FORM con un esfuerzo computacional adicional aceptable. Posteriormente, se desarrolla una metodología de linealización para evaluar la fiabilidad del sistema en los problemas geotécnicos. Esta metodología solamente necesita la información proporcionada por el FORM: el vector de índices de fiabilidad de las funciones de estado límite (LSFs) que componen el sistema y su matriz de correlación. Se analizan dos problemas geotécnicos comunes —la estabilidad de un talud en un suelo estratificado y un túnel circular excavado en roca— para demostrar la sencillez, precisión y eficiencia del procedimiento propuesto. Asimismo, se reflejan las ventajas de la metodología de linealización con respecto a las herramientas computacionales alternativas. Igualmente se muestra que, en el caso de que resulte necesario, se puede emplear el SORM —que aproxima la verdadera LSF mejor que el FORM— para calcular estimaciones más precisas de la fiabilidad del sistema. Finalmente, se presenta una nueva metodología que emplea Algoritmos Genéticos para identificar, de manera precisa, las superficies de deslizamiento representativas (RSSs) de taludes en suelos estratificados, las cuales se emplean posteriormente para estimar la fiabilidad del sistema, empleando la metodología de linealización propuesta. Se adoptan tres taludes en suelos estratificados característicos para demostrar la eficiencia, precisión y robustez del procedimiento propuesto y se discuten las ventajas del mismo con respecto a otros métodos alternativos. Los resultados muestran que la metodología propuesta da estimaciones de fiabilidad que mejoran los resultados previamente publicados, enfatizando la importancia de hallar buenas RSSs —y, especialmente, adecuadas (desde un punto de vista probabilístico) superficies de deslizamiento críticas que podrían ser no-circulares— para obtener estimaciones acertadas de la fiabilidad de taludes en suelos. Reliability analyses provide an adequate tool to consider the inherent uncertainties that exist in geotechnical parameters. This dissertation develops a simple linearization-based approach, that uses first or second order approximations, to efficiently evaluate the system reliability of geotechnical problems. First, reliability methods are employed to analyze the reliability of two tunnel design aspects: face stability and performance of support systems. Several reliability approaches —the first order reliability method (FORM), the second order reliability method (SORM), the response surface method (RSM) and importance sampling (IS)— are employed, with results showing that the assumed distribution types and correlation structures for all random variables have a significant effect on the reliability results. This emphasizes the importance of an adequate characterization of geotechnical uncertainties for practical applications. Results also show that both FORM and SORM can be used to estimate the reliability of tunnel-support systems; and that SORM can outperform FORM with an acceptable additional computational effort. A linearization approach is then developed to evaluate the system reliability of series geotechnical problems. The approach only needs information provided by FORM: the vector of reliability indices of the limit state functions (LSFs) composing the system, and their correlation matrix. Two common geotechnical problems —the stability of a slope in layered soil and a circular tunnel in rock— are employed to demonstrate the simplicity, accuracy and efficiency of the suggested procedure. Advantages of the linearization approach with respect to alternative computational tools are discussed. It is also found that, if necessary, SORM —that approximates the true LSF better than FORM— can be employed to compute better estimations of the system’s reliability. Finally, a new approach using Genetic Algorithms (GAs) is presented to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes, and such RSSs are then employed to estimate the system reliability of slopes, using our proposed linearization approach. Three typical benchmark-slopes with layered soils are adopted to demonstrate the efficiency, accuracy and robustness of the suggested procedure, and advantages of the proposed method with respect to alternative methods are discussed. Results show that the proposed approach provides reliability estimates that improve previously published results, emphasizing the importance of finding good RSSs —and, especially, good (probabilistic) critical slip surfaces that might be non-circular— to obtain good estimations of the reliability of soil slope systems.