617 resultados para Polysaccharides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study was to verify the approach on starch-gelatin blending for the paperboard coating formulations with enhanced barrier and mechanical properties. Based on that, another objective was to find out, how the approach will function with wood-based polysaccharides (CMC, EHEC and HPC) by analyzing their barrier properties and convertibility. The last objective was to find out, if pigments can be used in the composition of polysaccharide-protein blends without causing any negative effect on stated properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied included pilot-scale coating and converting trials for the evaluation of mechanical properties of obtained coatings, namely their exposure to cracking with the loss of barrier properties. The results obtained indicated that the combination of starch with gelatin, in fact, improves the grease barrier properties and flexibility of starch-based coatings, thereby confirming the offered approach. The similar results were obtained for CMC, exhibited elevated barrier properties and surface coverage, proving that the approach also functions with wood-based polysaccharides. The introduction of equal amounts of talc gave various effects at different gelatin dosages on barrier properties of wood-based polysaccharides. Mainly, the elevation of grease barrier properties was observed. The convertibility of talc-filled coatings was not sufficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of climatic variations on fructan content in tropical regions is not well known. The present study deals with the effects of temperature on fructan contents in rhizophores of plants of Vernonia herbacea, a native species from the Brazilian cerrado vegetation. Intact plants and fragmented rhizophores were subjected to different temperatures under natural and controlled environmental conditions. Rhizophores of plants in pre-dormant stage (aerial parts showing some yellowish leaves) presented higher fructan content at 5oC than those kept at 25oC, whereas in dormant plants (aerial parts absent) temperature treatments did not affect fructan contents. Fragmented rhizophores obtained from dormant plants presented higher levels of fructo-polysaccharides at the end of the experiment than at the beginning of the treatment, regardless of the temperature they were stored, whereas fragments obtained from vegetative plants showed a decrease in fructan content under the same treatments. It was concluded that variations observed in fructan contents are related to the phenological state of the plants prior to the treatment rather than to extraneous temperatures they are subjected to during this stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colleters of Mandevilla illustris and M. velutina are present on the cotyledons, shoot apices, mature leaves and on the nodal region, where they are interpetiolar and intrapetiolar. In M. velutina there are two colleters on the adaxial basal part of the leaf blade, and in M. illustris, this number varies. The differentiation of the colleters occurs in the early stages of leaf development. When colleters are mature, they consist of a long head on a short stalk. The central core of the colleter is made up of parenchymatous cells that may exhibit phenolic compounds and is surrounded by radially elongated epithelial cells. The foliar and intrapetiolar colleters can exhibit vascularization. The colleters produce a translucient sticky substance that reacts positively to polysaccharides and, before senescence, they produce lipophilic substances. The Mandevilla colleters data can give support to the taxonomy and phylogeny of the Apocynaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the suggestions of its pectic composition, no clear evidence for this has been presented. Here we show the occurrence of such a structure in walls of cells from cotyledons of Hymenaea courbariI L. These cells are known to accumulate large amounts of storage xyloglucan in the wall and, in this case, the protuberances seem to contain this storage polysaccharide rather than pectin. A hypothetical sequence of events leading from wall strands to protuberances was assembled based on scanning electron microscopy observations. On this basis, a tentative model for how polysaccharides are distributed into the wall, near the regions where protuberances are found, is proposed to explain the presence of storage xyloglucan in their composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactomannans (GM) are storage cell wall polysaccharides present in endospermic seeds of legumes. They are thought to be storage polymers, since it has been observed for a few species (among them Sesbania virgata) that they are completely broken down after germination and their products are transferred to the growing embryo. We examined the effect of 10-4 M abscisic acid (ABA) on the degradation of galactomannan in isolated endosperms and intact seeds of S. virgata. We found that after seed germination the initial embryo growth was retarded. Ultrastructural analysis showed that the embryo is completely surrounded by an endosperm which displays very thick galactomannan-containing cell walls. Although an inhibitory effect has been observed on the increase of fresh mass of the embryo, the effect of ABA on the dry mass was weaker and transitory (from 48 to 96 h). Endosperm dry mass and galactomannan degradation were significantly inhibited and the activity of alpha-galactosidase was strongly affected. The addition of ABA before and/or after the start of mobilisation in intact seeds or isolated endosperms, showed that whereas addition before mobilisation did not affect dry mass decrease in intact seeds, it was strongly affected in isolated endosperms. On the other hand, whereas it affected embryo fresh mass increase in intact seeds, but not in isolated embryos, no significant effect was observed on dry mass. These results suggest that ABA affects galactomannan degradation and by doing so, prevents water absorption by the embryo, rather than affect its dry mass. As ABA has been detected in the endosperm of seeds of S. virgata, it is proposed that it probably acts as a modulator of galactomannan mobilisation and consequently synchronises it with early growth of the embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants accumulate antimicrobial compounds (phytoalexins) in response to a wide variety of microorganisms. Mucor ramosissimus Samutsevitsch is a saprobe capable of inducing phytoalexin production in soybean cotyledons and in the leaves of tropical Rubiaceae on whose surface it has been found. In the present study, the elicitor from M. ramosissimus was partially purified and the activity compared to that of a glucan elicitor isolated from Phytophthora sojae. Optimal isolation of the elicitor (based on fungal growth, yield of spores and elicitor activity) was achieved by autoclaving spores obtained from nine day-old cultures of the fungus. The elicitor was precipitated with ethanol and purified by chromatography on an anion exchange column, which retained the elicitor, and a Concanavalin A-affinity matrix, to which the elicitor did not bind. The purification resulted in a considerable increase (six-fold) in the specific activity of the elicitor. Neutral sugar composition, analyzed by HPLC, revealed the predominance of mannose, followed by glucose and galactose, whereas colorimetric quantification showed the presence of uronic acids. GC-MS analysis of the elicitor revealed the predominance of glucuronic acid and mannose. These results suggest that fragments of mucoran-type polysaccharides are the phytoalexin elicitors present in the spores of the saprobe M. ramosissimus. Our results also indicate for the first time that soybean cotyledon tissues can recognize fragments of glucuronic-acid heteropolymers as phytoalexin elicitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cotyledon mesophyll cell morphology and lipid and protein synthesis of T. grandiflorum, T. subincanum and T. bicolor were analyzed and compared with T. cacao. These species possess foliar cotyledons folded around the hypocotyl radicle axis, typical of Sterculiaceae. Fruit size, morphology and weight are very distinct amongst the four species and so are the respective seeds. The main axis of the T. grandiflorum and T. bicolor seeds measured about 30 mm, while T. subincanum and T. cacao seeds measured 17 mm and 26 mm respectively. The seed weights of T. grandiflorum, T. bicolor, T. subincanum and T. cacao were 11.6 g, 9.4 g, 2.1 g and 3.0 g, respectively. The cotyledon mesophylls of the four species contained mainly polysaccharides and lipid-protein reserve cells. Theobroma cacao, T. grandiflorum and T. subincanum were composed of greater than 50% lipids. For the four species, lipid globules gradually accumulated adjacent to the cell wall, and these globules measured from 1 to 3 µm. TEM showed low-density proteins inside the central vacuole of the young mesophyll cells of T. cacao. The protein reserves of the mature cells were densely scattered amongst the lipid bodies, and a few starch granules occurred together with the cotyledon mesophyll of the four species. Polyphenolic cells were found throughout the mesophyll cells or aligned with the respective vascular bundles. Immature cells demonstrated the capacity to synthesize all these reserves, but gradually the pre-determined cells produced mainly lipid-protein reserves. Besides the unique characteristics of the T. cacao products, the lipid-protein synthesis capacities of T. grandiflorum, T. subincanum and T. bicolor suggest various possibilities for new industrialized food, pharmaceutical and cosmetic products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were carried out in vitro with three viscous polysaccharides (guar gum, pectin, and carboxymethylcellulose (CMC)) of similar initial viscosity submitted to conditions that mimic events occurring in the stomach and duodenum, and their viscosity in these situations was compared to their actions on postprandial hyperglycemia in normal human subjects. Guar gum showed greater viscosity than the other gums during acidification and/or alkalinization and also showed larger effects on plasma glucose levels (35% reduction in maximum rise in plasma glucose) and on the total area under the curve of plasma glucose (control: 20,314 ± 1007 mg dl-1 180 min-1 vs guar gum: 18,277 ± 699 mg dl-1 180 min-1, P<0.01). Pectin, which showed a marked reduction in viscosity at 37oC and after events mimicking those that occur in the stomach and duodenum, did not have a significant effect on postprandial hyperglycemia. The performance of viscosity and the glycemia response to CMC were at an intermediate level between guar gum and pectin. In conclusion, these data suggest that temperature, the process of acidification, alkalinization and exposure to intestinal ions induce different viscosity changes in gums having similar initial viscosity, establishing a direct relationship between a minor decrease of gum viscosity in vitro and a reduction of postprandial hyperglycemia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5))()and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serum antibodies specific for the capsular polysaccharides of Streptococcus pneumoniae provide protection against invasive pneumococcal infection. In Brazil, this vaccine has been used for people over 65 years with clinical risk to develop pneumococcal infection since 1999. We evaluated the immune response of 102 elderly subjects (75.5% females and 24.5% males) with a mean age of 71 years, and 19 young healthy adults (63.2% females and 36.8% males) with a mean age of 27 years. The elderly study group consisted of outpatients who received follow-up care in the Geriatric Department of General Hospital, Faculty of Medicine, University of São Paulo. None had acute illness at the time of vaccination. Both groups were immunized with one intra-deltoid injection with 0.5 ml of a 23-valent pneumococcal polysaccharide vaccine. The total IgG specific antibody concentrations to capsular polysaccharides 1, 3, 5, 6B, 8, and 14 were determined against pre- and 1-month post-vaccination sera. All samples were analyzed according to the second-generation pneumococcal polysaccharide ELISA protocol. We observed that the pneumococcal polysaccharide vaccine evoked consistent antibody increase for serotypes 1, 5, 6B, 8, and 14 (geometric mean concentration increase of 2.46 in the elderly and 2.84 in the young adults). Otherwise, we observed no increase in antibody concentration for serotype 3 in both groups.