937 resultados para Poly(propylene) (PP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a novel technique involving knitting and electrospinning to fabricate a composite scaffold for ligament tissue engineering. Knitted structures were coated with poly(L-lactic-co-e-caprolactone) (PLCL) and then placed onto a rotating cylinder and a PLCL solution was electrospun onto the structure. Highly aligned 2-μm-diameter microfibers covered the space between the stitches and adhered to the knitted scaffolds. The stress–strain tensile curves exhibited an initial toe region similar to the tensile behavior of ligaments. Composite scaffolds had an elastic modulus (150 ± 14 MPa) similar to the modulus of human ligaments. Biological evaluation showed that cells proliferated on the composite scaffolds and they spontaneously orientated along the direction of microfiber alignment. The microfiber architecture also induced a high level of extracellular matrix secretion, which was characterized by immunostaining. We found that cells produced collagen type I and type III, two main components found in ligaments. After 14 days of culture, collagen type III started to form a fibrous network. We fabricated a composite scaffold having the mechanical properties of the knitted structure and the morphological properties of the aligned microfibers. It is difficult to seed a highly macroporous structure with cells, however the technique we developed enabled an easy cell seeding due to presence of the microfiber layer. Therefore, these scaffolds presented attractive properties for a future use in bioreactors for ligament tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed a composite scaffold for potential use in tendon or ligament tissue engineering. The composite scaffold was made of a cellularized alginate gel that encapsulated a knitted structure. Our hypothesis was that the alginate would act as a cell carrier and deliver cells to the injury site while the knitted structure would provide mechanical strength to the composite construct. The mechanical behaviour and the degradation profile of the poly(lactic-co-glycolic acid) knitted scaffolds were evaluated. We found that our scaffolds had an elastic modulus of 750 MPa and that they lost their physical integrity within 7 weeks of in vitro incubation. Autologous rabbit mesenchymal stem cell seeded composite scaffolds were implanted in a 1-cm-long defect created in the rabbit tendon, and the biomechanical properties and the morphology of the regenerated tissues were evaluated after 13 weeks. The regenerated tendons presented higher normalized elastic modulus of (60%) when compared with naturally healed tendons (40%). The histological study showed a higher cell density and vascularization in the regenerated tendons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major imperfections in crosslinked polymers include loose or dangling chain ends that lower the crosslink d., thereby reducing elastic recovery and increasing the solvent swelling. These imperfections are hard to detect, quantify and control when the network is initiated by free radical reactions. As an alternative approach, the sol-​gel synthesis of a model poly(ethylene glycol) (PEG-​2000) network is described using controlled amts. of bis- and mono-​triethoxy silyl Pr urethane PEG precursors to give silsesquioxane (SSQ, R-​SiO1.5) structures as crosslink junctions with a controlled no. of dangling chains. The effect of the no. of dangling chains on the structure and connectivity of the dried SSQ networks has been detd. by step-​crystn. differential scanning calorimetry. The role that micelle formation plays in controlling the sol-​gel PEG network connectivity has been studied by dynamic light scattering of the bis- and mono-​triethoxy silyl precursors and the networks have been characterized by 29Si solid state NMR, sol fraction and swelling measurements. These show that the dangling chains will increase the mesh size and water uptake. Compared to other end-​linked PEG hydrogels, the SSQ-​crosslinked networks show a low sol fraction and high connectivity, which reduces solvent swelling, degree of crystallinity and the crystal transition temp. The increased degree of freedom in segment movement on the addn. of dangling chains in the SSQ-​crosslinked network facilitates the packing process in crystn. of the dry network and, in the hydrogel, helps to accommodate more water mols. before reaching equil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of poly(acrylic acid) (PAA) with different end groups and molar masses prepared by Atom Transfer Radical Polymerization (ATRP) to inhibit the formation of calcium carbonate scale at low and elevated temperatures was investigated. Inhibition of CaCO3 deposition was affected by the hydrophobicity of the end groups of PAA, with the greatest inhibition seen for PAA with hydrophobic end groups of moderate size (6–10 carbons). The morphologies of CaCO3 crystals were significantly distorted in the presence of these PAAs. The smallest morphological change was in the presence of PAA with long hydrophobic end groups (16 carbons) and the relative inhibition observed for all species were in the same order at 30 °C and 100 °C. As well as distorting morphologies, the scale inhibitors appeared to stabilize the less thermodynamically favorable polymorph, vaterite, to a degree proportional to their ability to inhibit precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5–15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new diketopyrrolopyrrole (DPP)-containing donor-acceptor polymer, poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene) (PDBF-co-TT), is synthesized and studied as a semiconductor in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). High hole mobility of up to 0.53 cm 2 V -1 s -1 in bottom-gate, top-contact OTFT devices is achieved owing to the ordered polymer chain packing and favoured chain orientation, strong intermolecular interactions, as well as uniform film morphology of PDBF-co-TT. The optimum band gap of 1.39 eV and high hole mobility make this polymer a promising donor semiconductor for the solar cell application. When paired with a fullerene acceptor, PC 71BM, the resulting OPV devices show a high power conversion efficiency of up to 4.38% under simulated standard AM1.5 solar illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μ h = 0.024 cm 2 V -1 s -1 and μ e = 0.056 cm 2 V -1 s -1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of metal residues from organometallic reagents used in preparation of poly(9,9-dioctylfluorene) by palladium catalysed Suzuki and nickel-induced Yamamoto polycondensations have been determined, and their effect upon the behaviour of the polymer in field-effect transistors (FETs) has been measured. The metal levels from material polymerised by Suzuki method were found to be much higher than from that made by the Yamamoto procedure. Simple treatment of the polymers with suitable metal trapping reagents lowered the metal levels significantly, with EDTA giving best results for nickel and triphenylphosphine for palladium. Comparison of the behaviour of FETs using polyfluorenes with varying levels of metal contamination, showed that the metal residues have little effect upon the mobility values, but often affect the degree of hysteresis, possibly acting as charge traps. Satisfactory device performances were obtained from polymer with palladium levels of 2000 μg/g suggesting that complete removal of metal residues may not be necessary for satisfactory device performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS and CdSe nanoparticles have been prepared using conducting poly(3-hexylthiophene) (P3HT) matrix with an objective to understand the effect of nanoparticles on the polymer matrix using electrochemical and spectroscopic techniques. The spectroscopic results reveal that the electronic structure of polymer is strongly influenced by the characteristics of embedded semiconducting nanoparticles. SEM and TEM images show the ordered morphology of the CdS and CdSe nanoparticles in presence of the polymer matrix. Cyclic voltammetry performed both in the presence and absence of light enables us to understand the redox changes in P3HT due to CdS and CdSe quantum dots such as the generation of free radical in the excited state and their electrochemical band gaps.