984 resultados para Pollution monitoring
Resumo:
Description based on: 1981; title from cover.
Resumo:
Published in 7 v., v. 1 being a statewide summary report and other 6 v. being the regional reports.
Resumo:
Includes 87 or more reports on individual lakes in Illinois; some will be updated periodically.
Resumo:
"IEPA/WPC/86-001."
Resumo:
"IEPA/WPC/84-030."
Resumo:
"November, 1982."
Resumo:
"November 14, 2005."
Resumo:
"June 1986."
Resumo:
"GAO-01-313."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This collection of papers records a series of studies, carried out over a period of some 50 years, on two aspects of river pollution control - the prevention of pollution by sewage biological filtration and the monitoring of river pollution by biological surveillance. The earlier studies were carried out to develop methods of controlling flies which bred in the filters and caused serious nuisance and possible public health hazard, when they dispersed to surrounding villages. Although the application of insecticides proved effective as an alleviate measure, because it resulted in only a temporary disturbance of the ecological balance, it was considered ecologically unsound as a long-term solution. Subsequent investigations showed that the fly populations in filters were largely determined by the amount of food available to the grazing larval stage in the form of filter film. It was also established that the winter deterioration in filter performance was due to the excessive accumulation of film. Subsequent investigations were therefore carried out to determine the factors responsible for the accumulation of film in different types of filter. Methods of filtration which were considered to control film accumulation by increasing the flushing action of the sewage, were found to control fungal film by creating nutrient limiting conditions. In some filters increasing the hydraulic flushing reduced the grazing fauna population in the surface layers and resulted in an increase in film. The results of these investigations were successfully applied in modifying filters and in the design of a Double Filtration process. These studies on biological filters lead to the conclusion that they should be designed and operated as ecological systems and not merely as hydraulic ones. Studies on the effects of sewage effluents on Birmingham streams confirmed the findings of earlier workers justifying their claim for using biological methods for detecting and assessing river pollution. Further ecological studies showed the sensitivity of benthic riffle communities to organic pollution. Using experimental channels and laboratory studies the different environmental conditions associated with organic pollution were investigated. The degree and duration of the oxygen depletion during the dark hours were found to be a critical factor. The relative tolerance of different taxa to other pollutants, such as ammonia, differed. Although colonisation samplers proved of value in sampling difficult sites, the invertebrate data generated were not suitable for processing as any of the commonly used biotic indexes. Several of the papers, which were written by request for presentation at conferences etc., presented the biological viewpoint on river pollution and water quality issues at the time and advocated the use of biological methods. The information and experiences gained in these investigations was used as the "domain expert" in the development of artificial intelligence systems for use in the biological surveillance of river water quality.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.