932 resultados para Poisson Arrivals
Resumo:
In this study we apply count data models to four integer–valued time series related to accidentality in Spanish roads applying both the frequentist and Bayesian approaches. The time series are: number of fatalities, number of fatal accidents, number of killed or seriously injured (KSI) and number of accidents with KSI. The model structure is Poisson regression with first order autoregressive errors. The purpose of the paper is first to sort out the explanatory variables by relevance and second to carry out a prediction exercise for validation.
Resumo:
This paper deals with sequences of random variables belonging to a fixed chaos of order q generated by a Poisson random measure on a Polish space. The problem is investigated whether convergence of the third and fourth moment of such a suitably normalized sequence to the third and fourth moment of a centred Gamma law implies convergence in distribution of the involved random variables. A positive answer is obtained for q = 2 and q = 4. The proof of this four moments theorem is based on a number of new estimates for contraction norms. Applications concern homogeneous sums and U-statistics on the Poisson space.
Resumo:
"NSF - OCA - GJ-36936 - 000006."
Resumo:
Bibliography: p. 67-68.
Resumo:
Includes bibliography.
Resumo:
Mode of access: Internet.
Resumo:
"Addenda" Dec. 1953, tipped in.
Resumo:
Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes -- found in many fields of physics, chemistry and biology -- into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where standard Poisson expansions are not able to.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.
Resumo:
2010 Mathematics Subject Classification: 60J80.