697 resultados para Plantation
Resumo:
Parasitoid Hymenoptera collected in a soybean plantation (Glycine max (L.)) Merril (Fabaceae) at the municipal district of Nuporanga, SP, Brazil. Parasitoid Hymenoptera were collected by using Moericke trap placed in a soybean plantation (Glycine max (L.) Merril) (Fabaceae) of the variety Conquista, during the period of March 24th to April 7th, 2000. A total of 4,969 specimens of parasitoids, belonging to seven superfamilies and 15 families, were collected. Scelionidae, Encyrtidae, Aphelinidae and Trichogrammatidae were the most common families, being responsible for 41.66%, 19.42%, 11.19% and 7.35% of the total number of parasitoids collected, respectively. Other eleven families showed the relative frequency lower than 5%.
Resumo:
Simopelta minima (Brandão, 1989) was originally described based on four workers collected in soil samples from a small cocoa plantation in Ilhéus, state of Bahia, northeastern Brazil. In the subsequent years after the description, this cocoa plantation was eliminated and the species was then considered extinct by the Brazilian environmental institutions. The recent rediscovery of S. minima workers in subterranean pitfall trap samples from Viçosa, state of Minas Gerais, southeastern Brazil, over 1.000 km distant from type locality, suggests that the rarity and vulnerability status of some ant species may be explained by insufficient sampling of adequate microhabitats, in time and space.
Resumo:
In Cape Verde, the low soil cover and inadequate practices on rain fed agricultural lands constitute major problems related to desertification. To the fragility of the land associates severe water erosion, causing tons of land to be washed away from the fields every year during the rainy season. Therefore, the aim in the scope of combating desertification is to provide a certain degree of permanent soil cover to serve as shield for the impact of rain. During the selection workshop several technologies, all related to vegetative cover either as strips or surface cover were discussed. Only two technologies were selected: vegetation strip with pigeon pea and afforestation with fruit trees. Technology 1: Pigeon pea (cajanus cajan) barriers/strips. It consists in planting seeds of pigeon pea, a leguminous perennial shrub that has dual purpose of protecting the soil and feed people. It is planted in association with maize crop. After the maize is harvested, the soil remains with some degree of cover. Though the objective was to plant as strip barriers, six meters apart, most farmers planted it as surface cover. Technology 2: Afforestation with fruit trees. It consists in the plantation of different fruit tree species in humid areas to provide both soil cover and feed for farmers. Since fruit trees require several years to provide effective cover, and though it was implemented in some areas, it was not evaluated during the project’s period.
Resumo:
In Cape Verde, the low soil cover and inadequate practices on rain fed agricultural lands constitute major problems related to desertification. To the fragility of the land associates severe water erosion, causing tons of land to be washed away from the fields every year during the rainy season. Therefore, the aim in the scope of combating desertification is to provide a certain degree of permanent soil cover to serve as shield for the impact of rain. During the selection workshop several technologies, all related to vegetative cover either as strips or surface cover were discussed. Only two technologies were selected: vegetation strip with pigeon pea and afforestation with fruit trees. Technology 1: Pigeon pea (cajanus cajan) barriers/strips. It consists in planting seeds of pigeon pea, a leguminous perennial shrub that has dual purpose of protecting the soil and feed people. It is planted in association with maize crop. After the maize is harvested, the soil remains with some degree of cover. Though the objective was to plant as strip barriers, six meters apart, most farmers planted it as surface cover. Technology 2: Afforestation with fruit trees. It consists in the plantation of different fruit tree species in humid areas to provide both soil cover and feed for farmers. Since fruit trees require several years to provide effective cover, and though it was implemented in some areas, it was not evaluated during the project’s period.
Resumo:
Feeding and oviposition preferences of Ctenarytaina spatulata Taylor (Hemiptera, Psyllidae) for Eucalyptus spp. and other Myrtaceae in Brazil. The Australian psyllid, Ctenarytaina spatulata Taylor (Hemiptera, Psyllidae), was first detected in Brazil in 1994, where it was found on drought-affected shoots of Eucalyptus grandis in a plantation located in the northern part of Paraná State. The oviposition and feeding preferences of this psyllid were examined on 19 Eucalyptus species, one Eucalyptus hybrid (Cambiju), three Corymbia species and four native Myrtaceae species (Hexaclames edulis, Marlieria edulis, Plinia trunciflora, and Psydium sp.) under greenhouse conditions. The largest populations of C. spatulata were found on E. robusta and E. pellita, while sizeable infestations were also found on E. urophylla, E. grandis, and the Cambiju hybrid. The plants with the greatest symptoms of damage were E. grandis and E. resinifera. Eucalyptus cinerea, E. benthamii, E. pilularis, and E. dunnii were not infested and E. cloeziana was minimally infested. Among the Corymbia species, the number of eggs of C. spatulata was very low on C. citriodora and C. torelliana. No eggs and nymphs of C. spatulata were found on native Brazilian Myrtaceae. The number of eggs on plants was highly correlated with the subsequent levels of nymphs, suggesting that egg counts can be used as a viable monitoring tool to assist with the integrated management of this pest.
Resumo:
In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.
Resumo:
Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively). After two years, only 6.2 % N were missing in the balance (100 %) which can be attributed to other non-estimated compartments and experimental errors. Results show that an enrichment of only 2 % atom 15N allows the study of the partition of fertilizer-N in a perennial crop such as coffee during a period of two years.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.
Resumo:
The impact of wood loads on bulk density and preconsolidation pressure and of harvester and forwarder traffic on rut depth, bulk density and preconsolidation pressure of two Ultisols were examined in this study. Our objective was to quantify the threshold beyond which significant soil compaction and rutting would occur. This study was carried out in the county of Eunápolis, state of Bahia, Brazil, (16 º 23 ' 17 '' S and 39 º 10 ' 06 '' W; altitude 80 m asl) in two Ultisols (PAd2 and PAd3) with different texture classes, in experimental areas with eucalypt plantation. The study involved measurements at the wood load site and machine driving at specific locations in the forest during logging operations. The treatments consisted of one harvester pass and, 8, 16 and 40 passes of a fully loaded forwarder. Thresholds were established based on the rut depth and percentage of preconsolidation pressure values in the region of additional soil compaction defined in the bearing capacity model. The percentage of soil samples with values of preconsolidation pressure in the region of additional soil compaction indicated a greater susceptibility of PAd3 than of PAd2 to soil compaction. The threshold levels established here based on preconsolidation pressure and rut depth indicated that no more than eight forwarder passes should be allowed in loading operations in order to minimize soil compaction.
Resumo:
Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.
Resumo:
Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P) increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.
Resumo:
Information on the spatial structure of soil physical and structural properties is needed to evaluate the soil quality. The purpose of this study was to investigate the spatial behavior of preconsolidation pressure and soil moisture in six transects, three selected along and three across coffee rows, at three different sites under different tillage management systems. The study was carried out on a farm, in Patrocinio, state of Minas Gerais, in the Southeast of Brazil (18 º 59 ' 15 '' S; 46 º 56 ' 47 '' W; 934 m asl). The soil type is a typic dystrophic Red Latosol (Acrustox) and consists of 780 g kg-1 clay; 110 g kg-1 silt and 110 g kg-1 sand, with an average slope of 3 %. Undisturbed soil cores were sampled at a depth of 0.10-0.13 m, at three different points within the coffee plantation: (a) from under the wheel track, where equipment used in farm operations passes; (b) in - between tracks and (c) under the coffee canopy. Six linear transects were established in the experimental area: three transects along and three across the coffee rows. This way, 161 samples were collected in the transect across the coffee rows, from the three locations, while 117 samples were collected in the direction along the row. The shortest sampling distance in the transect across the row was 4 m, and 0.5 m for the transect along the row. No clear patterns of the preconsolidation pressure values were observed in the 200 m transect. The results of the semivariograms for both variables indicated a high nugget value and short range for the studied parameters of all transects. A cyclic pattern of the parameters was observed for the across-rows transect. An inverse relationship between preconsolidation pressure and soil moisture was clearly observed in the samples from under the track, in both directions.
Resumo:
This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.