994 resultados para Planktonic Microalgae.
Resumo:
[EN]Isocitrate Dehydrogenase (IDH) is a key enzyme in the Krebs cycle, being responsible for the production of one of the three CO2 molecules related to cellular respiration. In order to measure the potential CO2 production linked to the marine planktonic community we have adapted an enzymatic methodology. Preliminary results show that different proportions of autotrophs, heterotrophs and mixotrophs and their metabolic pathways, lead to different relationships between potential CO2 emission and potential O2 consumption during cellular respiration. Although more experiments need to be made, this methodology is leading to a better understanding of cellular respiration in marine samples and their impact on the food chain, vertical Carbon flux and the current sequestering capacity for anthropogenic CO2.
Resumo:
Microalgae have been studied because of their great potential as a source of new compounds with important value for biotechnology and to understand their strategies of survival in extreme environments. The microalgae Coccomyxa sp., studied in this thesis, is a poly-extremophile witch was isolated from the acid mine drainage of S. Domingos mine. This environment is characterized by low pH (<3) and high concentration of metals, such as copper and iron. The main purpose of the present work was to evaluate the potential bioactivity in an ex-vivo animal model (Fundulus heteroclitus), and expression on selected genes, of cellular extracts obtained from cultures of Coccomyxa sp. at pH 7 without or with exposure to copper (0.6mM Cu²+). The extracts of Coccomyxa sp. cultured at pH 7 exposed to copper show a great potential to be used as epithelial NKCC inhibitors, revealing their potential use as diuretics, but did not show significant effects on gene expression. Coccomyxa sp. could be a good source of cellular extracts with a great potential to be used in pharmaceutical and biotechnology industries.
Resumo:
There is a need for biomethane capture and carbon dioxide sequestration to mitigate evident global climate change. This research work investigated the potential for microalgae to remove CO2 from biogas as a biotechnical method for upgrading the thermal value for subsequent compression, liquification, or introduction to natural gas pipelines. Because biogas is largely methane, the effect of high methane environments on mixed microalgae was explored and found that specific carbon utilization rates were not statistically different when microalgae were exposed to biogas environments (70% v/v CH4) , relative to high CO2 environment. The uses of conventional bubbled column photobioreactors (PBR) were assessed for CO2 removal and subsequent CH4 enrichment. A continuously-bubbled biogas PBR (cB-PBR5) and intermittently-bubbled biogas PBR (iB-PBR) experienced CO2 loading rates of about 1664 and 832 mg C/L*day and showed 30.0 and 60.1 % carbon removal, respectively. However, a lack of biogas enrichment and issues associated growth inhibition due to high CO2 environments as well as stripping the dissolved gases, namely oxygen and nitrogen, from the bulk liquid and introduction to the outlet gas prompted the consideration for gas/liquid separation using nonporous hollow-fiber (HF) membranes for CO2 transfer. The potential for two non-porous HF membrane materials [polydimethylsiloxane (PDMS) and composite polyurethane (PU)] were modeled along fiber length using a mechanistic model based on polymeric material transport properties (Gilmore et al., 2009). Based on a high CO2:CH4 permeability selectivity for PU of 76.2 the model predicted gas enrichment along an 8.5 cm fiber length. Because PDMS permeability selectivity is low (3.5), evident gas transfer was not predicated along a 34.3 cm length. Both of these HF materials were implemented in hollow-fiber membrane-carbonated biofilm (HFMcB) PBRs for microalgal-mediated biogas enrichment. Phototrophic biofilm colonization occurred on the membrane, where CO2 concentration was greatest. The presence of a biofilm demonstrated greater resiliency to high CO2 environments, compared to the conventional PBRs. However, as the PDMS model predicted, the PDMS HFMcBs did not demonstrate gas enrichment. These reactors received CO2 loading rates of 200 mg C/L*day based on PDMS permeability flux and showed approximately 65% removal of the total C transferred across the membrane. Thus, the HFMcBs demonstrated controlled carbonation of the bulk liquid via a nonporous HF membrane. Likewise, the experimental PU HFMcB did not show gas enrichment yet this result should be further explored due to the high permeability selectivity of the polymeric material. Chemical stratifications, namely pH and dissolved O2, present in a PDMS membrane-carbonated biofilm were analyzed using electrochemical microsensors. Results indicated that high DO (20 mg L-1) exists at surface of the biofilm where light availability is greatest and low pH microenvironments (pH=5.40) exist deep in the biofilm where the diffusive flux of CO2 drives transfer through the biofilm. The presence of a 400-600 ¿m liquid phase boundary layer was evident from microsensor profiles. Cryosectioning of the biofilm samples showed the biofilm to be approximately 1.17 ± 0.07 mm thick, suggesting that the high localized concentration of biomass associated with the phototrophic biofilm aided in overcoming inhibition in a microenvironment dominated by CO2(aq). Challenges of biofilm detachment and PBR fouling as well as microalgal growth inhibition in the presence of high CO2 content remain for applications of microalgae for biogas enrichment.
Resumo:
Marine sediments from the Integrated Ocean Drilling Project (IODP) Site U1314 (56.36°N, 27.88°W), in the subpolar North Atlantic, were studied for their planktonic foraminifera, calcium carbonate content, and Neogloboqudrina pachyderma sinistral (sin.) δ13C records in order to reconstruct surface and intermediate conditions in this region during the Mid-Pleistocene Transition (MPT). Variations in the palaeoceanography and regional dynamics of the Arctic Front were estimated by comparing CaCO3 content, planktonic foraminiferal species abundances, carbon isotopes and ice-rafted debris (IRD) data from Site U1314 with published data from other North Atlantic sites. Site U1314 exhibited high abundances of the polar planktonic foraminifera N. pachyderma sin. and low CaCO3 content until Marine Isotope Stage (MIS) 26, indicating a relatively southeastward position of the Arctic Front (AF) and penetration of colder and low-salinity surface arctic water-masses. Changing conditions after MIS 25, with oscillations in the position of the AF, caused an increase in the northward export of the warmer North Atlantic Current (NAC), indicated by greater abundances of non-polar planktonic foraminifera and higher CaCO3. The N. pachyderma sin. δ13C data indicate good ventilation of the upper part of the intermediate water layer in the eastern North Atlantic during both glacial and interglacial stages, except during Terminations 24/23, 22/21 and 20/1. In addition, for N. pachyderma (sin.) we distinguished two morphotypes: non-encrusted and heavily encrusted test. Results indicate that increases in the encrusted morphotype and lower planktonic foraminiferal diversity are related to the intensification of glacial conditions (lower sea-surface temperatures, sea-ice formation) during MIS 22 and 20.
Resumo:
Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
(Figure 2) Stratigraphic distribution of planktonic foraminifera in the Neogene of ODP Hole 122-762B
Resumo:
The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.
Resumo:
A high-resolution (~4-5cm/kyr) giant piston core record (MD962085) retrieved during an IMAGES II-NAUSICAA cruise from the continental slope of the southeast Atlantic Ocean reveals striking variations in planktonic foraminifer faunal abundances and sea-surface temperatures (SST) during the past 600 000 yr. The location and high-quality sedimentary record of the core provide a good opportunity to assess the variability of the Benguela Current system and associated important features of the ocean-climate system in the southeast Atlantic. The planktonic foraminifer faunal abundances of the core are dominated by three assemblages: (1) Neogloboquadrina pachyderma (right coiling) + Neogloboquadrina dutertrei, (2) Globigerina bulloides, and (3) Globorotalia inflata. The assemblage of N. pachyderma (right coiling) + N. dutertrei shows distinctive abundance changes which are nearly in-phase with glacial-interglacial variations. The high abundances of this assemblage are associated with major glacial conditions, possibly representing low SST/high nutrient level conditions in the southwestern Africa margin. In contrast, the G. bulloides and G. inflata assemblages show greater high-frequency abundance change patterns, which are not parallel to the glacial-interglacial changes. These patterns may indicate rapid oceanic frontal movements from the south, and a rapid change in the intensity of the Benguela upwelling system from the east. A single episode of maximum abundances of a polar water species N. pachyderma (left coiling) occurred in the beginning of stage 9 (~340-330 kyr). The event of the maximum occurrence of this species shown in this record may indicate instability in the Benguela coastal upwelling, or the Antarctic polar front zone position. A winter season SST estimate using transfer function techniques for this record shows primarily glacial-interglacial variations. The SST is maximal during the transitions from the major glacial to interglacial stages (Terminations I, II, IV, V), and is associated with the abundance maxima of a warm water species indicator Globigerinoides ruber. Cross-spectral analyses of the SST record and the SPECMAP stack reveal statistically significant concentrations of variance and coherencies in three major orbital frequency bands. The SST precedes changes in the global ice volume in all orbital frequency bands, indicating a dominant southern Hemispheric climate effect over the Benguela Current region in the southeast Atlantic.
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
A detailed record of the strontium-87 to strontium-86 ratio in seawater during the last 100 million years was determined by measuring this ratio in 137 well-preserved and well-dated fossil foraminifera samples. Sample preservation was evaluated from scanning electron microscopy studies, measured strontium-calcium ratios, and pore water strontium isotope ratios. The evolution of the strontium isotopic ratio in seawater offers a means to evaluate long-term changes in the global strontium isotope mass balance. Results show that the marine strontium isotope composition can be used for correlating and dating well-preserved authigenic marine sediments throughout much of the Cenozoic to a precision of +/- 1 million years. The strontium-87 to strontium-86 ratio in seawater increased sharply across the Cretaceous/Tertiary boundary, but this feature is not readily explained as strontium input from a bolide impact on land.