963 resultados para Plane elasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method to enhance both the sensitivity and bandwidth of in-plane capacitive micromachined accelerometers by using compliant mechanical amplifiers, and thus obviating the compromise between the sensitivity and bandwidth. Here, we compare one of the most sensitive single-axis capacitive accelerometers and another with large resonant frequency reported in the literature with the modified designs that include displacement-amplifying compliant mechanisms (DaCMs) occupying the same footprint and under identical conditions. We show that 62% improvement in sensitivity and 34% improvement in bandwidth in the former, and 27% and 25% in the latter can be achieved. Also presented here is a dual-axis accelerometer that uses a suspension that decouples and amplifies the displacements along the two in-plane orthogonal axes. The new design was microfabricated, packaged, and tested. The device is 25-mu m thick with the interfinger gap as large as 4 m. Despite the simplicity of the microfabrication process, the measured axial sensitivity (static) of about 0.58 V/g for both the axes was achieved with a cross-axis sensitivity of less than +/- 2%. The measured natural frequency along the two in-plane axes was 920 Hz. Displacement amplification of 6.2 was obtained using the DaCMs in the dual-axis accelerometer. 2013-0083]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of insoluble surfactants on the instability of a two-layer film flow down an inclined plane is investigated based on the Orr-Sommerfeld boundary value problem. The study, focusing on Stokes flow P. Gao and X.-Y. Lu, ``Effect of surfactants on the inertialess instability of a two-layer film flow,'' J. Fluid Mech. 591, 495-507 (2007)], is further extended by including the inertial effect. The surface mode is recognized along with the interface mode. The initial growth rate corresponding to the interface mode accelerates at sufficiently long-wave regime in the presence of surface surfactant. However, the maximum growth rate corresponding to both interface and surface modes decelerates in the presence of surface surfactant when the upper layer is more viscous than the lower layer. On the other hand, when the upper layer is less viscous than the lower layer, a new interfacial instability develops due to the inertial effect and becomes weaker in the presence of interfacial surfactant. In the limit of negligible surface and interfacial tensions, respectively, two successive peaks of temporal growth rate appear in the long-wave and short-wave regimes when the interface mode is analyzed. However, in the case of the surface mode, only the long-wave peak appears. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a linear model in each partition. The proposed algorithm is similar in spirit to k-means clustering algorithm. We show that our algorithm can also be viewed as a special case of an EM algorithm for maximum likelihood estimation under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with that of the state of art algorithms on various datasets. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA nanotubes are tubular structures composed of DNA crossover molecules. We present a bottom up approach for the construction and characterization of these structures. Various possible topologies of nanotubes are constructed such as 6-helix, 8-helix and tri-tubes with different sequences and lengths. We have used fully atomistic molecular dynamics simulations to study the structure, stability and elasticity of these structures. Several nanosecond long MD simulations give the microscopic details about DNA nanotubes. Based on the structural analysis of simulation data, we show that 6-helix nanotubes are stable and maintain their tubular structure; while 8-helix nanotubes are flattened to stabilize themselves. We also comment on the sequence dependence and the effect of overhangs. These structures are approximately four times more rigid having a stretch modulus of similar to 4000 pN compared to the stretch modulus of 1000 pN of a DNA double helix molecule of the same length and sequence. The stretch moduli of these nanotubes are also three times larger than those of PX/JX crossover DNA molecules which have stretch moduli in the range of 1500-2000 pN. The calculated persistence length is in the range of a few microns which is close to the reported experimental results on certain classes of DNA nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by similar to 38 and similar to 20%, respectively, vis-A -vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tri-layer metamaterial absorber, composed of a metal structure/dielectric spacer/vanadium dioxide (VO2) ground plane, is shown to switch reversibly between reflective and absorptive states as a function of temperature. The VO2 film, which changes its conductivity by four orders of magnitude across a insulator-metal transition at about 68 degrees C, enables the switching by forming a resonant absorptive structure at high temperatures while being inactive at low temperatures. The fabricated metamaterial shows a modulation of the reflectivity levels of 58% at a frequency of 22.5 THz and 57% at a frequency of 34.5 THz. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of external weld flash on the formability of friction stir welding sheets through in-plane plane-strain formability tests. The load-extension behavior and forming limit strains are measured to quantify the formability. The influence of friction stir welding parameters on the height of weld flash was also studied. The base materials used for welding trials are AA6061T6 and AA5052H32 alloy sheets of 2.1-mm thickness. It is observed that the influence of external weld flash on the maximum load and total extension for all the friction stir welding conditions is negligible. The effect of weld flash on the limiting major strain is also insignificant. But the presence of weld flash has changed the limiting minor strain, more toward plane-strain condition, indicating the change in strain-path toward plane-strain. This is due to the strain taken by weld flash, along with the major strain, minor strain, and thickness strain in the friction stir welding sheet plane because of constancy of volume. The formation of weld flash and its height are affected synergistically by the axial force and temperature development during friction stir welding. The higher the axial force and temperature, the higher the flash height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a convex curve in the plane (say, the unit circle), and let be a family of planar convex bodies such that every two of them meet at a point of X. Then has a transversal of size at most . Suppose instead that only satisfies the following ``(p, 2)-condition'': Among every p elements of , there are two that meet at a common point of X. Then has a transversal of size . For comparison, the best known bound for the Hadwiger-Debrunner (p, q)-problem in the plane, with , is . Our result generalizes appropriately for if is, for example, the moment curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.