834 resultados para Pituitary-adrenal Axis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alterations in the hypothalamic-pituitary-gonadal axis in females determine the transition from regular to irregular reproductive cycles, with loss of fertility. Stimulation of noradrenergic neurons of the anteroventral periventricular neurons (AVPV) is essential for regular reproductive cycles. Therefore, we examined the activity of neurons of the AVPV and measure the noradrenaline (NE) of acyclic rats, in constant estrus, and compared it with that of cyclic rats in estrus. Female cyclic (4-5months) and acyclic (17-18months) rats were euthanized at 10, 14, and 18h in estrus. Brains were processed for immunoreactivity to antigens related to Fos (FRA) in AVPV, and the NE was determined by HPLC-ED. Plasma concentrations of LH, FSH, E2 and P4 were determined. In the acyclic animals, plasma LH was higher but the FSH was lower. There was decreasing P4 at different times, while the E2 was constant and lower in acyclic rats. FRA-ir expression in AVPV neurons of acyclic rats as well as turnover of NE was higher when compared with cyclic group. The preliminary findings showed increased activity in AVPV neurons in aging contribute to changes in the temporal pattern of neuroendocrine signaling, compromising the accuracy of inhibitory and stimulatory effects, causing irregularity in the estrous cycle and determining reproductive senescence.
Resumo:
Indirect composite resin systems have been routinely recommended for making restorations in distressed patients. The purpose of this study was to evaluate histologically in rats the effect of chronic stress on the reaction of subcutaneous connective tissue after implant of Artglass™. For this purpose, 60 rats were divided into four groups (GI (control), GII (stressed), GIII (Artglass™) and GIV (Artglass™. / stressed) received dorsal subcutaneous implants of polyethylene tubes containing saline solution (GI and GII) or Artglass™ (GIII and GIV). In groups of four animals were sacrificed at 7,14 and 28 days postoperatively. The results allowed to observe more intense inflammatory reaction and tissue organization later in the animals subjected to stress.
Resumo:
Stress is an environmental factor that may predispose individuals to depression. Benzodiazepines have been prescribed as effective drugs in these situations. The purpose of this study was histological evaluate of the effect of chronic stress and benzodiazepine drugs on bone healing. Bone cavities were created in both tibias of 40 male rats were divided into two groups: Control and Treaty. In this, the stressor stimulus was applied 40 days pre-operative and all post-operative days until sacrifice in the morning for 2 hours, by immobilizing restraint. These animals also received diazepam benzodiazepine group, daily, at a concentration of 5mg/Kg/peso body within 15 days of preoperative. In groups of five animals were sacrificed at 7, 14, 30 and 60 days post-surgery. At 7 days postoperatively, while the control group exhibited tissue rich in fibroblasts, the treated group showed newly formed tissue with few fibroblasts and capillaries along with lymphocytes and macrophages. At 14 days postsurgery, the control group showed newly formed trabecular bone while the treated group progressed to thin trabecular bone with numerous osteoblasts on their borders. At 30 days post-operative bone healing is complete in both groups. At 60 days post-operative characteristics observed in the treated and control groups are similar to the previous period, but with more advanced osteogenesis.
Resumo:
Physiological functions undergo a gradual retardation that begins around 25-30 years and extends to the death. Moreover, this change affects most severely the activities more complex and more intricate responses to tensions or stress. The purpose of this study was to evaluate histologically in aged rats the effect of chronic stress on the reaction of subcutaneous connective tissue. The purpose of this study was to evaluate histologically in aged rats the effect of chronic stress on the reaction of subcutaneous connective tissue. For this purpose, 60 rats were divided into four groups (GI (control), GII (stressed), GIII (elderly) and GIV (aged / stressed) received dorsal subcutaneous implants of polyethylene tubes containing saline solution. In groups of four animals were sacrificed at 7,14 and 28 days postoperatively. The results allowed to observe more intense inflammatory reaction and tissue organization later in the aged animals subjected to stress.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. In the present study, we tested the possible involvement of magnocellular neurons of the paraventricular (PVN) and/or supraoptic (SON) of the hypothalamus that synthesize vasopressin in the cardiovascular pathway activated by the microinjection of NA into the MeA. Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl2, 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA Into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods Twenty-four adult Wistar rats, 60 days old (+/- 250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. Results Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
BACKGROUND: Studies in men are not consistent regarding the effects of thyroid hormone on the production of gonadotropins. In hypothyroidism consequent to diverse causes, an increase or no change in serum luteinizing hormone (LH) have been reported. The attempt to explain the mechanisms involved in this pathology using rats as an experimental model also seems to repeat this divergence, since hypothyroidism has been shown to induce hypogonadotropic hypogonadism, a hypergonadotropic state, or not to affect the basal levels of LH. Notably, the promoter region of the gene encoding the Lh beta subunit and GnRH (gonadotropin-releasing factor) does not contain a thyroid responsive element. Therefore, we investigated the hypothesis that, in male rats, posttranscriptional mechanisms of LH synthesis are altered in hypothyroidism. We also attempted to determine if hypothyroidism directly affects testicular function in male rats. METHODS: Male Wistar rats, 60 days old, were thyroidectomized or sham-operated. After 20 days, they were decapitated, and the pituitaries were collected and analyzed for Lh mRNA, LH content, poly(A) tail length, and polysome profile. The testes were collected and analyzed for Lh receptor mRNA, LH receptor content, and histology using morphometric analyses. The testis, epididymis, seminal vesicle, and ventral prostate were weighed, and serum concentrations of LH, testosterone, thyrotropin (TSH), and triiodothyronine (T3) were measured. RESULTS: Hypothyroidism was associated, in the pituitary, with an increase in Lh mRNA expression, a reduction in Lh mRNA poly(A) tail length, a reduction in the number of LH transcripts associated with polysomes. Pituitary LH was decreased but serum LH was increased from 102 to 543 pg/mL. Despite this, serum testosterone concentrations were decreased from 1.8 to 0.25 ng/mL. A decreased germinative epithelium height of the testes and a reduced weight of androgen-responsive tissues were observed (ventral prostrate: 74 vs. 23 mg/100 g body weight [BW]; seminal vesicle undrained: 280 vs. 70 mg/100 g BW; and seminal vesicle drained: 190 vs. 60 mg/100 g BW). CONCLUSIONS: Hypothyroidism in adult male rats has dual effects on the pituitary testicular axis. It alters posttranscriptional mechanisms of LH synthesis and probably has a direct effect on testicular function. However, these data suggest the possibility that reduced LH bioactivity may account in part for impaired testicular function.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Resumo:
The hypothalamus-pituitary-interrenal axis is involved in stress response regulation. In addition, arginine vasotocin (AVT) and isotocin (IT) are also considered as important players in this stress regulation. The present study assessed, using the teleost gilthead sea bream (Sparus aurata) as a biological model, hypothalamic mRNA expression changes of AVT and IT and their receptors at hepatic level after an acute stress situation. Specimens were submitted to air for 3 min and place back in their respective tanks after that, being sampled at different times (15 min, 30 min, 1, 2, 4 and 8 hours post-stress) in order to study the time course response. Plasma cortisol values increased after few minutes post-exposure, decreasing during the experimental time while a metabolic reorganization occurred in both plasmatic and hepatic levels. At hypothalamic level, acute stress affects mRNA expression of AVT and IT precursors, as well as hepatic expression of their receptors, suggesting the involvement of both vasotocinergic and isotocinergic systems in the acute stress response. Our results demonstrate the activation and involvement of both endocrine pathways in the regulation of metabolic and stress systems of Sparus aurata, which is stated, at least, through changes in mRNA expression levels of these genes analysed.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Resumo:
Ovariectomy interrupts the regulatory loop in the hypothalamus-pituitary-gonad axis, leading to a several-fold increase in gonadotropin levels. This rise in hormonal secretion may play a causal role in ovariectomy-related urinary incontinence. The purpose of this study was to examine the effect of ovariectomy in bitches on the expression of GnRH- and LH-receptors in the lower urinary tract, and assess the relationship between receptor expression and plasma gonadotropin concentrations. Plasma gonadotropins were measured in 37 client-owned bitches. Biopsies were harvested from the mid-ventral bladder wall in all dogs, and from nine further locations within the lower urinary tract in 17 of the 37 animals. Messenger RNA of the LH and GnRH receptors was quantified using RT-PCR with the TaqMan Universal PCR Master Mix. Gonadotropins were measured with a canine-specific FSH-immunoradiometric assay and LH-radioimmunoassay. The hierarchical mixed ANOVA model using MINITAB, Mann-Whitney U-test, unpaired means comparison and linear regressions using StatView were applied for statistical analyses. Messenger RNA for both receptors was detected in all biopsy samples. Age was negatively correlated to mRNA expression of the LH and the GnRH receptors. A relationship between the mRNA values and the plasma gonadotropin concentrations was not established. Evaluation of results within each of the biopsy locations revealed greater LH-receptor expression in the proximal second quarter of the urethra in spayed bitches than in intact bitches (P=0.0481). Increased mRNA expression of LH receptors in this location could possibly play a role in the decrease in closing pressure of the urethra following ovariectomy.
Resumo:
OBJECTIVES: We compared androgen and gonadotropin values in HIV-infected men who did and did not develop lipoatrophy on combination antiretroviral therapy (cART). METHODS: From a population of 136 treatment-naïve male Caucasians under successful zidovudine/lamivudine-based cART, the 10 patients developing lipoatrophy (cases) were compared with 87 randomly chosen controls. Plasma levels of free testosterone (fT), dehydroepiandrosterone (DHEA), follicle-stimulating hormone and luteinizing hormone (LH) were measured at baseline and after 2 years of cART. RESULTS: At baseline, 60% of the cases and 71% of the controls showed abnormally low fT values. LH levels were normal or low in 67 and 94% of the patients, respectively, indicating a disturbance of the hypothalamic-pituitary-gonadal axis. fT levels did not significantly change after 2 years of cART. Cases showed a significant increase in LH levels, while controls showed a significant increase in DHEA levels. In a multivariate logistic regression model, lipoatrophy was associated with higher baseline DHEA levels (P=0.04), an increase in LH levels during cART (P=0.001), a lower body mass index and greater age. CONCLUSIONS: Hypogonadism is present in the majority of HIV-infected patients. The development of cART-related lipoatrophy is associated with an increase in LH and a lack of increase in DHEA levels.
Resumo:
We investigated whether the chronic physical activity participation had an impact on the acute effects of a short bout of 12 min of intensive physical activity on cognitive performance and testosterone concentration in primary school students (n = 42, mean age = 9.69, SD = .44; experimental group (EG), n = 27; control group (CG), n = 15). Furthermore, we looked for associations between testosterone concentration and cognitive performance. After the intervention, participants of the EG showed better cognitive performances as compared to the CG. We further observed a significant group (EG, CG) test (pre, post) activity level (high, low) interaction. Post hoc pairwise comparisons revealed that after acute physical activity the testosterone concentration was diminished only in habitually low active children. The results indicate that intensive physical activity only attenuates the reactivity of the hypothalamic-pituitary-gonadal axis in habitually low active preadolescents, but had a beneficial effect on cognitive performance for all participants independent of their physical activity level and testosterone.