945 resultados para Physiological aspects.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Transport Systems (LTS) (e.g lightpipes, fibre optics) can illuminate core areas within buildings with great potential for energy savings. However, they do not provide a clear connection to the outside like windows do, and their effects on people’s physiological and psychological health are not well understood. Furthermore, how people perceive LTS affects users’ acceptance of the device and its performance. The purpose of this research is to understand how occupants perceive and experience spaces illuminated by LTS. Two case studies of commercial buildings with LTS, located in Brisbane, Australia are assessed by qualitative (focus group interviews) and quantitative (measurement of daylight illuminances and luminance) methods. The data from interviews with occupants provide useful insight into the aspects of LTS design that are most relevant to positive perception of the luminous environment. Luminance measurements of the occupied spaces support the perception of the LTS reported by occupants: designs that create high contrast luminous environments are more likely to be perceived negatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE It has been proposed that BRL37344, SR58611 and CGP12177 activate b3-adrenoceptors in human atrium to increase contractility and L-type Ca2+ current (ICa-L). b3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the b1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective b-adrenoceptor subtype antagonists to clarify cardiostimulant b-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on ICa-L. Contractile effects were determined on right atrial trabeculae. KEY RESULTS BRL37344 increased force which was antagonized by blockade of b1- and b2-adrenoceptors but not by blockade of b3-adrenoceptors with b3-adrenoceptor-selective L-748,337 (1 mM). The b3-adrenoceptor agonist SR58611 (1 nM–10 mM) did not affect atrial force. BRL37344 and SR58611 did not increase ICa-L at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and ICa-L at both 24°C and 37°C which was prevented by (-)-bupranolol (1–10 mM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS We conclude that the inotropic responses to BRL37344 are mediated through b1- and b2-adrenoceptors. The inotropic and ICa-L responses to (-)-CGP12177 are mediated through the low affinity site b1L-adrenoceptor of the b1-adrenoceptor. b3-adrenoceptor-mediated increases in ICa-L are restricted to low temperatures. Human atrial b3-adrenoceptors do not change contractility and ICa-L at physiological temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex surveillance problems are common in biosecurity, such as prioritizing detection among multiple invasive species, specifying risk over a heterogeneous landscape, combining multiple sources of surveillance data, designing for specified power to detect, resource management, and collateral effects on the environment. Moreover, when designing for multiple target species, inherent biological differences among species result in different ecological models underpinning the individual surveillance systems for each. Species are likely to have different habitat requirements, different introduction mechanisms and locations, require different methods of detection, have different levels of detectability, and vary in rates of movement and spread. Often there is a further challenge of a lack of knowledge, literature, or data, for any number of the above problems. Even so, governments and industry need to proceed with surveillance programs which aim to detect incursions in order to meet environmental, social and political requirements. We present an approach taken to meet these challenges in one comprehensive and statistically powerful surveillance design for non-indigenous terrestrial vertebrates on Barrow Island, a high conservation nature reserve off the Western Australian coast. Here, the possibility of incursions is increased due to construction and expanding industry on the island. The design, which includes mammals, amphibians and reptiles, provides a complete surveillance program for most potential terrestrial vertebrate invaders. Individual surveillance systems were developed for various potential invaders, and then integrated into an overall surveillance system which meets the above challenges using a statistical model and expert elicitation. We discuss the ecological basis for the design, the flexibility of the surveillance scheme, how it meets the above challenges, design limitations, and how it can be updated as data are collected as a basis for adaptive management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Surgical treatment of scoliosis is assessed in the spine clinic by the surgeon making numerous measurements on X-Rays as well as the rib hump. But it is important to understand which of these measures correlate with self-reported improvements in patients’ quality of life following surgery. The objective of this study was to examine the relationship between patient satisfaction after thoracoscopic (keyhole) anterior scoliosis surgery and standard deformity correction measures using the Scoliosis Research Society (SRS) adolescent questionnaire. Methods. A series of 100 consecutive adolescent idiopathic scoliosis patients received a single anterior rod via a keyhole approach at the Mater Children’s Hospital, Brisbane. Patients completed SRS outcomes questionnaires before surgery and again at 24 months after surgery. Multiple regression and t-tests were used to investigate the relationship between SRS scores and deformity correction achieved after surgery. Results. There were 94 females and 6 males with a mean age of 16.1 years. The mean Cobb angle improved from 52º pre-operatively to 21º for the instrumented levels post-operatively (59% correction) and the mean rib hump improved from 16º to 8º (51% correction). The mean total SRS score for the cohort was 99.4/120 which indicated a high level of satisfaction with the results of their scoliosis surgery. None of the deformity related parameters in the multiple regressions were significant. However, the twenty patients with the smallest Cobb angles after surgery reported significantly higher SRS scores than the twenty patients with the largest Cobb angles after surgery, but there was no difference on the basis of rib hump correction. Discussion. Patients undergoing thoracoscopic (keyhole) anterior scoliosis correction report good SRS scores which are comparable to those in previous studies. We suggest that the absence of any statistically significant difference in SRS scores between patients with and without rod or screw complications is because these complications are not associated with any clinically significant loss of correction in our patient group. The Cobb angle after surgery was the only significant predictor of patient satisfaction when comparing subgroups of patients with the largest and smallest Cobb angles after surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience underlies all kinds of human knowledge and it is dependent on context. People’s experience within a particular context-of-use determines how they interact with products. Methods employed in this research to elicit human experience have included the use of visuals. This paper describes two empirical studies that employed visual representation of concepts as a means to explore the experiential and contextual component of user- product interactions. One study employed visuals that the participants produced during the study. The other employed visuals that the researcher used as prompts during a focus group session. This paper demonstrates that using visuals in design research is valuable for exploring and understanding the contextual aspects of human experience and its influence on people’s concepts of product use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chapter approaches resilience from an evolutionary psychology perspective. In recent years scientific studies have revealed many of the biological processes associated with resilient behaviour. The authors argue that the internal constitution and mental toughness of the individual will provide a core protection for life's inevitable tests. A nurtured developing brain 'in-utero' and a physically close dyadic relationship in the early years of life, are crucial to the provision of a resilient personality. Many descriptors of the construct of resilience presented in various studies are explored in this chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; manual pushing, StaminaLift Bed Mover (SBM) and Gzunda Bed Mover (GBM)were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the SBM, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the GBM. The reduction in lower back muscular activation levels and the load reducing effect of a more upright posture may result in lower incidence of lower back injury.