857 resultados para Photovoltaic Solar Energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the practice of redeveloping Brownfields with solar photovoltaic renewable energy technology. Utilizing renewable energy as a strategy to reuse contaminated or potentially contaminated property is a relatively new convention. While the benefits of redeveloping Brownfields are well established, ongoing challenges and limited literature on the subject complicate the practice. Challenges, opportunities, and benefits related to renewable energy development on Brownfields are identified and analyzed. Strategic leveraging of federal, state, local, and utility incentives for renewable energy and Brownfield revitalization, and gap finance tools is explored and evaluated. A comparison of three photovoltaic Brownfield projects is analyzed for critical success and failure factors, and lessons learned. A recommendation of best practices is made based on findings and results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among org. and inorg. thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concn. can be achieved by using fresnel lens, parabolic mirrors or derivs. of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, a low-latitude country characterized by its high availability and uniformity of solar radiation, the use of PV solar energy integrated in buildings is still incipient. However, at the moment there are several initiatives which give some hints that lead to think that there will be a change shortly. In countries where this technology is already a daily reality, such as Germany, Japan or Spain, the recommendations and basic criteria to avoid losses due to orientation and tilt are widespread. Extrapolating those measures used in high latitudes to all regions, without a previous deeper analysis, is standard practice. They do not always correspond to reality, what frequently leads to false assumptions and may become an obstacle in a country which is taking the first step in this area. In this paper, the solar potential yield for different surfaces in Brazilian cities (located at latitudes between 0° and 30°S) are analyzed with the aim of providing the necessary tools to evaluate the suitability of the buildings’ envelopes for photovoltaic use

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Work Performed Under Contract No. EG-77-C-01-4042."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"December 1980."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar photovoltaic technology is one of the renewable technologies, which has a potential to shape a clean, reliable, scalable and affordable electricity system for the future. This article provides a comprehensive review of solar photovoltaic technology in terms of photovoltaic materials efficiency and globally leading countries. Based on past years review and photovoltaic installations in the year 2014, the major five leading countries identified are China, Japan, USA, Germany and UK. These five countries altogether accounted for 80% of photovoltaic installations in 2014. The article also discusses the driving policies, funding and Research and Development activities: to gauge the reasons behind the success of the leading countries. Finally, this article reviews the photovoltaic cost analysis in terms of the photovoltaic module cost, balance of system cost and project cost with the help of listed 98 globally installed projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PV energy is the direct conversion of solar radiation into electricity. In this paper, an analysis of the influence of parameters such as global irradiance or temperature in the performance of a PV installation has been carried out. A PV module was installed in a building at the University of Málaga, and these parameters were experimentally determined for different days and different conditions of irradiance and temperature. Moreover, IV curves were obtained under these conditions to know the open-circuit voltage and the short-circuit current of the module. With this information, and using the first law of thermodynamics, an energy analysis was performed to determine the energy efficiency of the installation. Similarly, using the second law of thermodynamics, an exergy analysis is used to obtain the exergy efficiency. The results show that the energy efficiency varies between 10% and 12% and the exergy efficiency between 14% and 17%. It was concluded that the exergy analysis is more suitable for studying the performance, and that only electric exergy must be considered as useful exergy. This exergy efficiency can be improved if heat is removed from the PV module surface, and an optimal temperature is reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.