968 resultados para Perturbation (Quantum dynamics)
Resumo:
Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.
Resumo:
The proton second moment (M2) and spin-lattice relaxation time (T1) have been measured in (NH4)2ZnBr4 in the range 77-300 K. The room-temperature spectrum shows a structure which disappears around 243 K. The signal is strong and narrow even at 77 K. Proton T1 shows a maximum at 263 K, caused by spin rotation interaction and decreases with decreasing temperature till 235 K, where it shows a sudden increase. Below 235 K, again it decreases and shows a slope change around 216.5 K (reported Tc). From 216.5 K, T1 decreases continuously without exhibiting any minimum down to 77 K. The narrow line at 77 K, and absence of a T1 minimum down to 77 K indicate the possibility of quantum mechanical tunnelling in this system. Motional parameters such as activation energy and pre-exponential factor have been evaluated for the reorientational motion of the NH+4 ion.
Resumo:
The relative quantum yields, phi*, for the production of I*(P-2(1/2)) at 266, 280, and similar to 305 nm are reported for a series of primary alkyl iodides using the technique of two-photon laser-induced fluorescence for the detection of I(P-2(3/2)) and I*(P-2(1/2)) atoms. Results are analyzed by invoking the impulsive energy disposal model, which summarizes the dynamics of dissociation as a single parameter. Comparison of our data with those calculated by a more sophisticated time-dependent quantum mechanical model is also made. Near the red edge of the alkyl iodide A band, absorption contribution from the (3)Q(1) state is important and the dynamics near the (3)Q(0)-(1)Q(1) curve-crossing region seem to be influenced by the kinematics of the dissociation process
Resumo:
An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.
Resumo:
An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.
Resumo:
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
Resumo:
We explore the salient features of the `Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.
Resumo:
Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.
Resumo:
We study the quenching dynamics of a many-body system in one dimension described by a Hamiltonian that has spatial periodicity. Specifically, we consider a spin-1/2 chain with equal xx and yy couplings and subject to a periodically varying magnetic field in the (z) over cap direction or, equivalently, a tight-binding model of spinless fermions with a periodic local chemical potential, having period 2q, where q is a positive integer. For a linear quench of the strength of the magnetic field (or chemical potential) at a rate 1/tau across a quantum critical point, we find that the density of defects thereby produced scales as 1/tau(q/(q+1)), deviating from the 1/root tau scaling that is ubiquitous in a range of systems. We analyze this behavior by mapping the low-energy physics of the system to a set of fermionic two-level systems labeled by the lattice momentum k undergoing a nonlinear quench as well as by performing numerical simulations. We also show that if the magnetic field is a superposition of different periods, the power law depends only on the smallest period for very large values of tau, although it may exhibit a crossover at intermediate values of tau. Finally, for the case where a zz coupling is also present in the spin chain, or equivalently, where interactions are present in the fermionic system, we argue that the power associated with the scaling law depends on a combination of q and the interaction strength.
Resumo:
The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)pi sigma* excited state with the bound (1)pi pi* excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)pi pi*-(1)pi sigma* and (1)pi sigma*-S-0 conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S-0, (1)pi pi*, (1)pi sigma*) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)pi pi* and (1)pi sigma* states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)sigma/(2)pi electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (nu(16a)) and ring-distortion (nu(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4709608]
Resumo:
Ampcalculator (AMPC) is a Mathematica (c) based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p(4))) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G(27). Another illustrative set of amplitudes at tree level we provide is in the context of tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.
Resumo:
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Resumo:
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.
Resumo:
The average time tau(r) for one end of a long, self-avoiding polymer to interact for the first time with a flat penetrable surface to which it is attached at the other end is shown here to scale essentially as the square of the chain's contour length N. This result is obtained within the framework of the Wilemski-Fixman approximation to diffusion-limited reactions, in which the reaction time is expressed as a time correlation function of a ``sink'' term. In the present work, this sink-sink correlation function is calculated using perturbation expansions in the excluded volume and the polymer-surface interactions, with renormalization group methods being used to resum the expansion into a power law form. The quadratic dependence of tau(r) on N mirrors the behavior of the average time tau(c) of a free random walk to cyclize, but contrasts with the cyclization time of a free self-avoiding walk (SAW), for which tau(r) similar to N-2.2. A simulation study by Cheng and Makarov J. Phys. Chem. B 114, 3321 (2010)] of the chain-end reaction time of an SAW on a flat impenetrable surface leads to the same N-2.2 behavior, which is surprising given the reduced conformational space a tethered polymer has to explore in order to react. (C) 2014 AIP Publishing LLC.
Resumo:
We study models of interacting fermions in one dimension to investigate the crossover from integrability to nonintegrability, i.e., quantum chaos, as a function of system size. Using exact diagonalization of finite-sized systems, we study this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L -> infinity nonintegrability sets in for an arbitrarily small integrability-breaking perturbation. The crossover value of the perturbation scales as a power law similar to L-eta when the integrable system is gapless. The exponent eta approximate to 3 appears to be robust to microscopic details and the precise form of the perturbation. We conjecture that the exponent in the power law is characteristic of the random matrix ensemble describing the nonintegrable system. For systems with a gap, the crossover scaling appears to be faster than a power law.