343 resultados para Peroxisome Proliferator


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emerging evidence indicates that skeletal muscle lipid droplets are an important control point for intracellular lipid homeostasis and that regulating fatty acid fluxes from lipid droplets might influence mitochondrial capacity. We used pharmacological blockers of the major triglyceride lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase, to show that a large proportion of the fatty acids that are transported into myotubes are trafficked through the intramyocellular triglyceride pool. We next tested whether increasing lipolysis from intramyocellular lipid droplets could activate transcriptional responses to enhance mitochondrial and fatty acid oxidative capacity. ATGL was overexpressed by adenoviral and adenoassociated viral infection in C2C12 myotubes and the tibialis anterior muscle of C57Bl/6 mice, respectively. ATGL overexpression in C2C12 myotubes increased lipolysis, which was associated with increased peroxisome proliferator-activated receptor (PPAR)-∂ activity, transcriptional upregulation of some PPAR∂ target genes, and enhanced mitochondrial capacity. The transcriptional responses were specific to ATGL actions and not a generalized increase in fatty acid flux in the myotubes. Marked ATGL overexpression (20-fold) induced modest molecular changes in the skeletal muscle of mice, but these effects were not sufficient to alter fatty acid oxidation. Together, these data demonstrate the importance of lipid droplets for myocellular fatty acid trafficking and the capacity to modulate mitochondrial capacity by enhancing lipid droplet lipolysis in vitro; however, this adaptive program is of minor importance when superimposing the normal metabolic stresses encountered in free-moving animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization. Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. Additionally, RA treatment increased expression of CCAAT/enhancer binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1)·day(-1)) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: It is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training. METHODS: A double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO2peak) and randomly allocated to placebo or antioxidant (vitamin C (2×500mg/day) and E (400IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10×4min cycling at 90% VO2peak, 2min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies. RESULTS: Acute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM. CONCLUSION: Following acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate – PA, 100 μm polydimethylsiloxane – PDMS, 65 μm polydimethylsiloxane/divinylbenzene – PDMS/DVB, 70 μm carbowax/divinylbenzene – CW/DVB and 85 μm carboxen/polydimethylsiloxane – CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L.) and Chickasaw plum (Prunus angustifolia). The isolation of metabolites was followed by thermal desorption gas chromatography–quadrupole mass spectrometry (GC–qMS) methodology. The performance of the target fibres was evaluated and compared. The SPME fibre coated with CW/DVB afforded the highest extraction efficiency in kiwi and papaya pulps, while in lemon and plum the same was achieved with PMDS/DVB fibre. This procedure allowed for the identification of 80 compounds, 41 in kiwi, 24 in plums, 23 in papaya and 20 in lemon. Considering the best extraction conditions, the most abundant volatiles identified in kiwi were the intense aldehydes and ethyl esters such as (E)-2-hexenal and ethyl butyrate, while in Chicasaw plum predominate 2-hexenal, 2-methyl-4-pentenal, hexanal, (Z)-3-hexenol and cyclohexylene oxide. The major compounds identified in the papaya pulp were benzyl isothiocyanate, linalool oxide, furfural, hydroxypropanone, linalool and acetic acid. Finally, lemon was shown to be the most divergent of the four fruits, being its aroma profile composed almost exclusively by terpens, namely limonene, γ-terpinene, o-cymene and α-terpinolene. Thirty two volatiles were identified for the first time in the fruit or close related species analysed and 14 volatiles are reported as novel volatile metabolites in fruits. This includes 5 new compounds in kiwi (2-cyclohexene-1,4-dione, furyl hydroxymethyl ketone, 4-hydroxydihydro-2(3H)-furanone, 5-acetoxymethyl-2-furaldehyde and ethanedioic acid), 4 in plum (4-hydroxydihydro-2(3H)-furanone, 5-methyl-2-pyrazinylmethanol, cyclohexylene oxide and 1-methylcyclohexene), 4 in papaya (octaethyleneglycol, 1,2-cyclopentanedione, 3-methyl-1,2-cyclopentanedione and 2-furyl methyl ketone) and 2 in lemon (geranyl farnesate and safranal). It is noteworthy that among the 15 volatile metabolites identified in papaya, 3-methyl-1,2-cyclopentanedione was previously described as a novel PPARγ (peroxisome proliferator-activated receptor γ) agonist, having a potential to minimize inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The HIV-infected individuals have been identified as a peculiar group whose propensity to the development of abnormalities in lipids metabolism supports the hypothesis that AIDS itself can be considered as an independent risk factor for the occlusive diseases development. The AIDS progression, as well as the therapy against HIV has been capable to show an array of metabolic disturbances that HIV-infected patients are prone to. These metabolic alterations affect the fate of plasmatic lipids and homocysteine as a result of three factor mainly: (i) the viral infection per se which triggers the development of hypertriglyceridemia and hipocholesterolemia; (ii) multiple vitamins and micronutrients deficiencies, that favors an onset of hyperhomocysteinemia; (iii) the state-of-the-art therapy for HIV infection, which is accompanied to idiosyncratic effects encompassing the lipid metabolism. In this context, a variety of risk factors to atherosclerosis can be identified in the HIV-infected individual. Of note, it must be considered that once life expectancy of these patients has been expanded due to the effective therapy, on the other hand they can accelerate atherosclerotic disease or its pathological appearance in the same extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15′-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9′10′-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1(r = 0.89; P<0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P< 0.001 and r = 0.62, P< 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver. © 2010 American Society for Nutrition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPARα and PPARγ, and plasma insulin-like growth factor 1 (IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPARγ protein, not PPARα, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. © 2011 American Society for Nutrition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)