1000 resultados para Perigos físicos não metálicos
Resumo:
Capítol 9 del llibre 'Conceptos y técnicas en ecología fluvial' que es refereix a la influència de factors com la temperatura de l'aigua, la disponibilitat de llum i la velocitat de la corrent en els organismes que viuen en els sistemes fluvials
Resumo:
Heterogeneous catalysts are of fundamental importance in several modern chemical processes. The characterization of catalysts is an issue of very present interest as it can provide a better understanding of the fundamental aspects of the catalytic phenomena, thus helping in the development of more efficient catalysts. In order to extend and improve the characterization of catalysts, new and less conventional methods are being applied, such as nuclear spectroscopies. In this paper we focus on the application of angular correlation, with can be used to resolve different local environments of probe atoms in solids and can be applied, as shown here, in the characterization of heterogeneous catalysts. A brief theoretical introduction is given and experimental results related to catalytic systems of alumina and niobia-supported Pt-In and Pd-In catalysts are presented.
Resumo:
This paper shows the applicability of the carbon paste electrode-mineral (CPE-mineral) to study the dissolution mechanisms of minerals in powder form and in flotation concentrates. A potentiodynamic strategy to find the dissolution mechanism of galena (PbS) is presented. In this way, minerals less studied such as orpiment (As2S3) and realgar (As2S2) are investigated. The electrochemical activity of a more complicated mineral such as sphalerite (ZnS), containing 12.3 and 0.43% of iron in solid solution, is discussed. The mechanism of a complex zinc concentrate (containing 63.4% ZnS, 20.1% FeS2, 5% CuFeS2, 0.33% PbS, 0.45% Cu12Sb4S13 and 0.4% FeAsS) is described. Finally, an electrochemical method for the detection of the different leachable and refractory silver phases (contained in two mineral concentrates) is presented. This paper reviews the power of the use of CPE-mineral coupled to electrochemical techniques in hydrometallurgy.
Resumo:
We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature.
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.
Resumo:
The oxidation of sulfite catalyzed by transition metal ions produces reactive oxysulfur species that can damage plasmid and isolated DNA in vitro. Among the four DNA bases, guanine is the most sensitive to one-electron oxidation promoted by the species formed in the autoxidation of sulfite (HSO5-, HO, SO3-, SO4- and SO5-) due to its low reduction potential and ability to bind transition metal ions capable to catalyze oxidative processes. Some oxidative DNA lesions are promutagenic and oxidative DNA damage is proposed to play a crucial role in certain human pathologies, including cancer.
Resumo:
Concentrations of Fe, Mn, Co, Cr, Zn and Cu were determinated using flame atomic absorption spectrometry in nine lichen species of the Sul-Mato-Grossense cerrado. The average metal ion concentrations varied in the following ranges: Fe, 248.41-1568.01; Mn, 98.50-397.33; Co, 10.08-24.81; Cr, 18.24-44.26; Zn, 14.62-34.79 and Cu, 3.23-7.57 mg kg-1. Statistical analysis (Pearson and Cluster) applied to the metal ion concentrations indicated that the accumulation of these ions can be due to several anthropogenic sources including agricultural activities, mineral exploration, biomass burning, soil mineral composition and leather tanning processes by chromium.
Resumo:
In this work a method was developed for removing metallic ions from wastewaters by co-precipitation of Cu2+, Pb2+, Cd2+, Cr3+ and Hg2+ with chitosan and sodium hydroxide solution. Solutions of these metallic ions in the range from 0.55 to 2160 mg L-1 were added to chitosan dissolved in 0.05 mol L-1 HCl. For the co-precipitation of metal-chitosan-hydroxide a 0.17 mol L-1 NaOH solution was added until pH 8.5-9.5. A parallel study was carried out applying a 0.17 mol L-1 NaOH solution to precipitate those metallic ions. Also, a chitosan solid phase column was used for removing those metallic ions from wastewaters.
Resumo:
Three approaches were applied to evaluate metal contamination in 41 sediment samples from the Santos - São Vicente Estuarine System: normalization to Al, statistical analysis and sediment quality guidelines (SQGs). The results showed increases in the concentrations of Zn, Ni, Pb, Cd, Cr and Hg, which seemed to be associated with human activities. The levels of Al, Fe and Co probably were associated with crustal material or natural weathering processes. About 45% of the samples presented concentrations exceeding TEL-ERL, levels occasionally associated with adverse biological effects. Four of these samples presented concentrations above PEL-ERM, levels frequently associated with adverse biological effects.
Resumo:
In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
Polymeric materials are widely used in the chemical industry and are part of our daily lives. Inorganic species may be added to them as additives, anti-oxidizing agents, stabilizers, plasticizers, colorants and catalysts and may be present in a wide range of concentrations. Their determination demands the development of analytical methods considering different kinds of polymeric materials, their composition and the final use of the material. Although many different analytical techniques may be used, this review emphasizes those based on atomic absorption and emission spectrometry. Solid sampling techniques and digestion methods are described and discussed and compared considering published results.
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
Nickel and vanadium were tested as tracers of oil refinery emission distribution in populated area of Rio Grande-RS. The anomalies of these elements in surface soil are considered a long-term reflection of the emissions in low atmosphere. The spatial distribution of Ni and V in the soil corresponded to the pattern of local winds. The threshold of 1.5 backgrounds of these metals markedly outlined the area of petrochemical emissions. Anomalies of Ni and V in surface soil have a rather different configuration in comparison with other metal tracers of urban impact: Cd, Cu, Pb and Zn.
Resumo:
Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce citotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs).