903 resultados para Pedestrian crash
Resumo:
Crash Rates and Crash Densities on Secondary Roads in Iowa by Functional Class produced by the Iowa Department of Transportation.
Resumo:
Despite a trend of decreasing teen fatalities due to motor vehicle crashes over the past decade, they remain the leading cause of adolescent fatalities in Iowa. The purpose of this study was to create detailed case studies of each fatal motor vehicle crash involving a driver under the age of 20 that occurred in Iowa in 2009, 2010, and 2011. Data for each crash were gathered from media sources, law enforcement agencies, and the Iowa Department of Transportation. The driving records of the teens, which included their licensure history, prior traffic citations, and prior crashes, were also acquired. In addition, data about the charges filed against a teen as a result of being involved in a fatal crash were obtained. A total of 126 crashes involving 131 teen drivers that resulted in 143 fatalities were analyzed. Many findings for fatal crashes involving teen drivers in Iowa are consistent with national trends, including the overrepresentation of male drivers, crash involvement that increases with age, crash involvement per vehicle miles traveled that decreases with age, and prevalence of single-vehicle road departure crashes. Relative to national statistics, teen fatalities from crashes in Iowa are more likely to occur from midnight to 6am and from 9am to noon. Crash type varied by driver age and county population level. Teen drivers contributed to the fatal crashes at a rate of 74%; contribution of the teen driver was unknown for 11% of crashes. Speed was a factor for about 25% of the crashes for which a teen driver was at fault. The same was also true of alcohol/drug impairment. Only 20% of the rear-seat occupants of the teen drivers’ vehicles wore seat belts compared to 60% use for the front-seat occupants. Analysis of the teens’ driving records prior to the fatal crash suggests at-fault crashes and speeding violations are associated with contributing to the fatal crash.
Resumo:
In 2010, 16.5 percent of all fatal vehicle crashes in Iowa involved large trucks compared to the national average of 7.8 percent. Only about 16 percent of these fatalities involved the occupants of the heavy vehicles, meaning that a majority of the fatalities in fatal crashes involve non-heavy-truck occupants. These statistics demonstrate the severe nature of heavy-truck crashes and underscore the serious impact that these crashes can have on the traveling public. These statistics also indicate Iowa may have a disproportionately higher safety risk compared to the nation with respect to heavy-truck safety. Several national studies, and a few statewide studies, have investigated large-truck crashes; however, no rigorous analysis of heavy-truck crashes has been conducted for Iowa. The objective of this study was to investigate and identify the causes, locations, and other factors related to heavy-truck crashes in Iowa with the goal of reducing crashes and promoting safety. To achieve this objective, this study used the most current statewide data of heavy-truck crashes in Iowa. This study also attempted to assess crash experience with respect to length of commercial driver’s license (CDL) licensure using the most recent five years of CDL data linked to the before mentioned crash data. In addition, this study used inspection and citation data from the Iowa Department of Transportation (DOT) Motor Vehicle Division and Iowa State Patrol to investigate the relationship between enforcement activities and crash experience.
Resumo:
The Highway Safety Manual is the national safety manual that provides quantitative methods for analyzing highway safety. The HSM presents crash modification factors related to work zone characteristics such as work zone duration and length. These crash modification factors were based on high-impact work zones in California. Therefore there was a need to use work zone and safety data from the Midwest to calibrate these crash modification factors for use in the Midwest. Almost 11,000 Missouri freeway work zones were analyzed to derive a representative and stratified sample of 162 work zones. The 162 work zones was more than four times the number of work zones used in the HSM. This dataset was used for modeling and testing crash modification factors applicable to the Midwest. The dataset contained work zones ranging from 0.76 mile to 9.24 miles and with durations from 16 days to 590 days. A combined fatal/injury/non-injury model produced a R2 fit of 0.9079 and a prediction slope of 0.963. The resulting crash modification factors of 1.01 for duration and 0.58 for length were smaller than the values in the HSM. Two practical application examples illustrate the use of the crash modification factors for comparing alternate work zone setups.
Resumo:
The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.
Resumo:
Photographic documentation of crashed vehicles at the scene can be used to improve triage of crash victims. A U.S. expert panel developed field triage rules to determine the likelihood of occupants sustaining serious injuries based on vehicle damage that would require transport to a trauma center (Sasser et al., 2011). The use of photographs for assessing vehicle damage and occupant compartment intrusion as it correlates to increased injury severity has been validated (Davidson et al., 2014). Providing trauma staff with crash scene photos remotely could assist them in predicting injuries. This would allow trauma care providers to assess the appropriate transport, as well as develop mental models of treatment options prior to patient arrival at the emergency department (ED). Crash-scene medical response has improved tremendously in the past 20-30 years. This is in part due to the increasing number of paramedics who now have advanced life support (ALS) training that allows independence in the field. However, while this advanced training provides a more streamlined field treatment protocol, it also means that paramedics focused on treating crash victims may not have time to communicate with trauma centers regarding crash injury mechanisms. As a result, trauma centers may not learn about severe trauma patients until just a few minutes before they arrive. The information transmitted by the TraumaHawk app allows interpretation of injury mechanisms from crash scene photos at the trauma center, providing clues about the type and severity of injury. With strategic crash scene photo documentation, trained trauma professionals can assess the severity and patterns of injury based on exterior crush and occupant intrusion. Intrusion increases the force experienced by vehicle occupants, which translates into a higher level of injury severity (Tencer et al., 2005; Assal et al., 2002; Mandell et al., 2010). First responders have the unique opportunity to assess the damaged vehicle at the crash scene, but often the mechanism of injury is limited or not even relayed to ED trauma staff. To integrate photographic and scene information, an app called TraumaHawk was created to capture images of crash vehicles and send them electronically to the trauma center. If efficiently implemented, it provides the potential advantage of increasing lead-time for preparation at the trauma center through the crash scene photos. Ideally, the result is better treatment outcomes for crash victims. The objective of this analysis was to examine if the extra lead-time granted by the TraumaHawk app could improve trauma team activation time over the current conventional communication method.
Resumo:
This report presents a national synthesis of rural expressway, two-way stop -controlled (TWSC) intersection safety strategies and intersection designs and an analysis of Iowa expressway TWSC intersection crash characteristics. A rural expressway is a multi-lane highway with a divided median and with mostly at -grade intersections, although some intersections may be grade separated. The synthesis of intersection strategies is conducted in two parts. The first is a literature review and the second part is a national survey of strategies currently being applied by state transportation agencies. The characterization of crash patterns at TWSC expressway intersections is examined through the analysis of 5 years of crash data at 644 intersections.
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
Vehicle-pedestrian crashes are a major concern for highway safety analysts. Research reported by Hunter in 1996 indicated that one-third of the 5,000 vehicle-pedestrian crashes investigated occurred at intersections, and 40 percent of those were at non-controlled intersections (Hunter et al. 1996). Numerous strategies have been implemented in an effort to reduce these accidents, including overhead signs, flashing warning beacons, wider and brighter markings on the street, and advanced crossing signs. More recently, pedestrian-activated, in-street flashing lights at the crosswalk and pedestrian crossing signs in the traffic lane have been investigated. Not all of these strategies are recognized as accepted practices and included in the Manual on Uniform Traffic Control Devices (MUTCD), but the Federal Highway Administration (FHWA) is supportive of experimental applications that may lead to effective technology that helps reduce crashes.
Resumo:
Recent trends (1980-2007) in mortality from road traffic crashes in European countries, and, for comparative purposes, in the USA and Japan were reviewed. Data came from the World Health Organisation database. Age-standardised rates, at all ages and at 15-24, 25-64, >=65 years, were computed. Joinpoint regression analyses to evaluate significant changes in trends were performed. In the European Union as a whole rates declined from 20.2 in 1987 to 13.5/100,000 in 2007 in men, and from 6.3 to 3.7/100,000 in women; European Union rates remained lower than USA, but higher than Japanese ones. In 2007, the highest male rates were in Lithuania (36.7/100,000), the Russian Federation (35.2), Ukraine (29.8), and Latvia (28.5), and the lowest ones in the Netherlands (6.2) and Sweden (6.9); the highest female rates were in the Russian Federation (11.3), Lithuania (9.7), Belarus, Latvia, and Ukraine (around 8), and the lowest ones in Switzerland (1.7), the UK, and Nordic countries (around 2). Mortality from motor vehicle crashes declined in northern and western European countries and - though to a lesser extent - in southern European countries, too. Mortality trends were also favourable in the Czech Republic and Poland since the mid 1990's, whereas they were still upwards in Romania and the Russian Federation. No trend was observed in Hungary and Ukraine. Trends were consistent in various age groups considered. Thus, additional urgent and integrated intervention is required to prevent avoidable deaths from motor vehicle crashes, particularly in selected central and eastern European countries.
Resumo:
A student crashes a car through the main entrance of Brock University and ransacks the office of the University President. The Buick La Sabre is driven through the glass doors of the Schmon Tower in the early morning, just as staff are beginning to report for work. The occupant of the vehicle proceeds to the tower's thirteenth floor, where he overturns furniture in the President's offices and breaks windows. University officials find him sitting in the President's chair, claiming he is God or Jesus.
Resumo:
The original Master Plan of 1964 called for the campus to stretch out 1 1/4 miles across the escarpment with arts buildings west of the tower and science buildings to the east. This plan laid out the development of Brock for the next 10 or 11 years by which time enrollment was expected to be near 8000 students. Pictured here is the tower and university centre. The view is looking east towards a cluster of science buildings and residences in the background.
Resumo:
The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots. We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.
Resumo:
In this paper, we discuss the consensus problem for synchronous distributed systems with orderly crash failures. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, first, we present a bivalency argument proof to solve the open problem of proving the lower bound, min (t + 1, f + 2) rounds, for early-stopping synchronous consensus with orderly crash failures, where t < n - 1. Then, we extend the system model with orderly crash failures to a new model in which a process is allowed to send multiple messages to the same destination process in a round and the failing processes still respect the order specified by the protocol in sending messages. For this new model, we present a uniform consensus protocol, in which all non-faulty processes always decide and stop immediately by the end of f + 1 rounds. We prove that the lower bound of early stopping protocols for both consensus and uniform consensus are f + 1 rounds under the new model, and our proposed protocol is optimal.
Resumo:
In November 2008, Colombian authorities dismantled a network of Ponzi schemes, making hundreds of thousands of investors lose tens of millions of dollars throughout the country. Using original data on the geographical incidence of the Ponzi schemes, this paper estimates the impact of their break down on crime. We find that the crash of Ponzi schemes differentially exacerbated crime in affected districts. Confirming the intuition of the standard economic model of crime, this effect is only present in places with relatively weak judicial and law enforcement institutions, and with little access to consumption smoothing mechanisms such as microcredit. In addition, we show that, with the exception of economically-motivated felonies such as robbery, violent crime is not affected by the negative shock.