922 resultados para Particle-size
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the measurement of the concentration and size of particles and the identification of their sources were carried out at five orthopedic surgeries. The aerosol concentration and particle size distribution, ranging from 0.3 mu m 10 mu m, were measured and related to the type of indoor activity. The handling of surgical linen and gowns, handling of the patient, use of electrosurgical apparatus, use of a bone saw, handling of equipment, and cleaning of the room were identified as the most important sources of particles, with each of these activities posing different risks to the health of the patients and workers. The results showed that most of the particles were above 0.5 mu m and that there was a strong correlation among all particles of sizes above 1 mu m. Particles with diameters in the range of 0.3 mu m-0.5 mu m had a good correlation only with particles in the ranges of 0.5 mu m-1.0 mu m and 1.0 mu m-3.0 mu m in three of the surgeries analyzed. Findings led to the conclusion that most of the events responsible for generating aerosol particles in an orthopedic surgery room are brief, intermittent, and highly variable, thus requiring the use of specific instrumentation for their continuous identification and characterization.
Resumo:
In this work, an improved protocol for inverse size-exclusion chromatography (ISEC) was established to assess important pore structural data of porous silicas as stationary phases in packed chromatographic columns. After the validity of the values generated by ISEC was checked by comparison with data obtained from traditional methods like nitrogen sorption at 77 K (Study A), the method could be successfully employed as valuable tool at the development of bonded poly(methacrylate)-coated silicas, while traditional methods generate partially incorrect pore structural information (Study B). Study A: Different mesoporous silicas were converted by a pseudomorphical transition into ordered MCM-41-type silica while maintaining the particle-size and -shape. The essential parameters like specific surface area, average pore diameter and specific pore volume, the pore connectivity from ISEC remained nearly the same which was reflected by the same course of the theoretical plate height vs. linear velocity curves. Study B: In the development of bonded poly(methacrylate)-coated silicas for the reversed phase separation of biopolymers, ISEC was the only method to generate valid pore structural information of the polymer-coated materials. Synthesis procedures were developed to obtain reproducibly covalently bonded poly(methacrylate) coatings with good thermal stability on different base materials, employing as well particulate and monolithic materials.
Resumo:
Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.
Resumo:
The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3+ T cells. Generally, the uptake of particles increased the expression of CD40 and CD86 in all DC populations, independent of particle size, whereas 20-nm particles induced enhanced antigen presentation to CD4+ T cells in LDLNs in vivo. Despite measurable uptake by DCs, the majority of particles were taken up by AMs, irrespective of size. Confocal microscopy and FACS analysis showed few particles in the main conducting airways, but a homogeneous distribution of all particle sizes was evident in the lung parenchyma, mostly confined to AMs. Particulate size as a key parameter determining uptake and trafficking therefore determines the fate of inhaled particulates, and this may have important consequences in the development of novel carriers for pulmonary diagnostic or therapeutic applications.
Resumo:
OBJECTIVES Hypothetically the atherogenic effect of the metabolic syndrome may be mediated through the increased occurrence of small LDL-particles which are easily modified to atherogenic oxidized LDL (ox-LDL). The aim of this study was to test this concept by examining the association between circulating ox-LDL, LDL-particle size, and the metabolic syndrome. DESIGN AND RESULTS A population-based sample of clinically healthy 58-year-old men (n = 391) was recruited. Ox-LDL was measured by ELISA (specific monoclonal antibody, mAb-4E6) and LDL-particle size by gradient gel electrophoresis. The results showed that ox-LDL significantly correlated to factors constituting the metabolic syndrome; triglycerides (r = 0.43), plasma insulin (r = 0.20), body mass index (r = 0.20), waist-to-hip ratio (r = 0.21) and HDL (r = -0.24); (P < 0.001). Ox-LDL correlated also to LDL-particle size (r = -0.42), Apo-B (r = 0.70), LDL (r = 0.65); (P < 0.001) and, furthermore, with Apo A-1 (r = -0.13) and heart rate (r = 0.13); (P < 0.01). CONCLUSION The metabolic syndrome was accompanied by high plasma ox-LDL concentrations compared with those without the syndrome. Ox-LDL levels were associated with most of the risk factors constituting the metabolic syndrome and was, in addition related to small LDL-particle size. To our knowledge the present study is the first one to demonstrate that circulating ox-LDL levels are associated with small LDL-particle size in a population representative sample of clinically healthy middle-aged men. The high degree of intercorrelation amongst several factors makes it difficult to clarify the independent role of any specific factor.
Resumo:
The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-l.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.
Resumo:
The purpose of this note is to present results of grain size analyses from 118 samples of the CRP-2/2A core using sieve and Sedigraph techniques. The samples were selected to represent the range of facies encountered, and tend to become more widely spaced with depth. Fifteen came from the upper 27 m of Quaternary and Pliocene sediments, 62 from the early Miocene-late Oligocene strata (27 to 307 mbsf), and 41 from the early Oligocene strata beneath (307 to 624 mbsf). The results are intended to provide reference data for lithological descriptions in the core logs (Cape Roberts Science Team, 1999), and to help with facies interpretation. The analytical technique used for determining size frequency of the sand fraction in our samples (sieving) is simple, physical and widely practised for over a century. Thus it provides a useful reference point for analyses produced by other faster and more sophisticated techniques, such as the Malvern laser particle size analysis system (Woolfe et al., 2000), and estimates derived from measurements taken with down-hole logging tools (Bücker, pers. com., 1999).
Resumo:
Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602-1, 13°32.71' N, 17°50.96'W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multi-parameter EM properties. One aeolian and two fluvial EMs were found. The aeolian EM is much coarser than the fluvial EMs and is associated with a lower goethite/hematite ratio, a higher relative concentration of magnetite and lower Al/Si and Fe/K ratios. Accumulation rates and grain sizes of the fluvial sediment appear to be primarily constrained by shore distance (i.e., sea-level fluctuations) and to a lesser extent by changes in hinterland precipitation. High dust fluxes occurred during the Last Glacial Maximum (LGM) and during Heinrich Stadials (HS) while the fluvial input remained unchanged. Our approach reveals that the LGM dust fluxes were ~7 times higher than today's. However, by far the highest dust accumulation occurred during HS 1 (~300 g m**-2 yr** -1), when dust fluxes were ~80 fold higher than today. Such numbers have not yet been reported for NW Africa, and emphasize strikingly different environmental conditions during HSs. They suggest that deflation rate and areal extent of HSs dust sources were much larger due to retreating vegetation covers. Beyond its regional and temporal scope, this study develops new, in principle, generally applicable strategies for multi-method end-member interpretation, validation and flux budgeting calibration.
Resumo:
Physical, chemical, and mineralogical properties of a set of surface sediment samples collected along the Chilean continental slope (21-44°S) are used to characterise present-day sedimentation patterns and sediment provenance on the Chilean margin. Despite the presence of several exceptional latitudinal gradients in relief, oceanography, tectonic evolution, volcanic activity and onshore geology, the present-day input of terrigenous sediments to the Chilean continental margin appears to be mainly controlled by precipitation gradients, and source-rock composition in the hinterland. General trends in grain size denote a southward decrease in median grain-size of the terrigenous (Corganic, CaCO3 and Opal-free) fraction, which is interpreted as a shift from aeolian to fluvial sedimentation. This interpretation is supported by previous observations of southward increasing bulk sedimentation rates. North-south trends in sediment bulk chemistry are best recognised in the iron (Fe) and titanium (Ti) vs. potassium (K) and aluminium (Al) ratios of the sediments that most likely reflect the contribution of source rocks from the Andean volcanic arc. These ratios are high in the northernmost part, abruptly decrease at 25°S, and then more or less constantly increase southwards to a maximum at ~40°S.
Resumo:
The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.