963 resultados para Parana continental flood basalts
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.
Resumo:
Clustering techniques are used in regional flood frequency analysis (RFFA) to partition watersheds into natural groups or regions with similar hydrologic responses. The linear Kohonen's self‐organizing feature map (SOFM) has been applied as a clustering technique for RFFA in several recent studies. However, it is seldom possible to interpret clusters from the output of an SOFM, irrespective of its size and dimensionality. In this study, we demonstrate that SOFMs may, however, serve as a useful precursor to clustering algorithms. We present a two‐level. SOFM‐based clustering approach to form regions for FFA. In the first level, the SOFM is used to form a two‐dimensional feature map. In the second level, the output nodes of SOFM are clustered using Fuzzy c‐means algorithm to form regions. The optimal number of regions is based on fuzzy cluster validation measures. Effectiveness of the proposed approach in forming homogeneous regions for FFA is illustrated through application to data from watersheds in Indiana, USA. Results show that the performance of the proposed approach to form regions is better than that based on classical SOFM.
Resumo:
A high resolution quantitative granulometric record for site Uchediya 21A degrees 43'2.22aEuro(3) N, 73A degrees 6'26.22aEuro(3) E; 10 m a. s. l.] gives understanding towards accretion history of the late Holocene flood plain in the lower reaches of Narmada River. Two sediment facies (sandy and muddy) and seven subfacies (sandy subfacies: St(MS+FS+CS), SmFS+MS, Sl(FS+VFS), and St(MS + CS); muddy subfacies: FmSILT+VFS+FS, FmSILT+VFS (O) and FmSILT+VFS (T)) are identified based on cluster analysis supplemented with sedimentary structures observed in field and other laboratory data. Changes in hydrodynamics are further deduced based on various sedimentological parameters and their ratios leading to arrive at a depositional model.
Resumo:
This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
Even though satellite observations are the most effective means to gather global information in a short span of time, the challenges in this field still remain over continental landmass, despite most of the aerosol sources being land-based. This is a hurdle in global and regional aerosol climate forcing assessment. Retrieval of aerosol properties over land is complicated due to irregular terrain characteristics and the high and largely uncertain surface reflection which acts as `noise' to the much smaller amount of radiation scattered by aerosols, which is the `signal'. In this paper, we describe a satellite sensor the - `Aerosol Satellite (AEROSAT)', which is capable of retrieving aerosols over land with much more accuracy and reduced dependence on models. The sensor, utilizing a set of multi-spectral and multi-angle measurements of polarized components of radiation reflected from the Earth's surface, along with measurements of thermal infrared broadband radiance, results in a large reduction of the `noise' component (compared to the `signal). A conceptual engineering model of AEROSAT has been designed, developed and used to measure the land-surface features in the visible spectral band. Analysing the received signals using a polarization radiative transfer approach, we demonstrate the superiority of this method. It is expected that satellites carrying sensors following the AEROSAT concept would be `self-sufficient', to obtain all the relevant information required for aerosol retrieval from its own measurements.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
The formation and growth of continental crust in the Archean have been evaluated through models of subduction-accretion and mantle plume. The Nilgiri Block in southern India exposes exhumed Neoarchean lower crust, uplifted to heights of 2500 m above sea level along the north western margin of the Peninsula. Major lithologies in this block include charnockite with or without garnet, anorthosite-gabbro suite, pyroxenite, amphibolite and hornblende-biotite gneiss (TTG). All these rock types are closely associated as an arc magmatic suite, with diffuse boundaries and coeval nature. The charnockite and hornblende-biotite gneisses (TTG) show SiO2 content varying from 64 to 73 wt.%. The hornblende-biotite gneisses (TTG) are high-Al type with Al2O3 >15 wt.% whereas the charnockites show Al2O3 <15 wt.%. The composition of charnockite is mainly magnesian and calcic to calc-alkaline. The mafic-ultramafic rocks show composition close to that of tholeiitic series. The low values of K(2)o (<3 wt.%), (K/Rb)/K2O (<500), Zr/Ti, and trace element ratios like (La/Yb)n/(Sr/Y), (Y/Nb), (Y + Nb)/Rb, (Y+Ta)/Rb, Yb/Ta indicate a volcanic arc signature for these rocks. The geochemical signature is consistent with arc magmatic rocks generated through oceanic plate subduction. The primitive mantle normalized trace element patterns of these rocks display enrichment in large ion lithophile elements (LILE) and comparable high field strength elements (HFSE) in charnockite and hornblende-biotite gneisses (TTG) consistent with subduction-related origin. Primitive mantle normalized REE pattern displays an enrichment in LREE in the chamockite and hornblende-biotite gneisses (TTG) as compared to a flat pattern for the mafic rocks. The chondrite normalized REE patterns of zircons of all the rock types reveal cores with high HREE formed at ca. 2700 Ma and rims with low HREE formed at 2500-2450 Ma. Log-transformed La/Th-Nb/Th-Sm/Th-Yb/Th discrimination diagram for the mafic and ultramafic rocks from Nilgiri displays a transition from mid-oceanic ridge basalt (MORB) to island arc basalt (IAB) suggesting a MORB source. The U-Pb zircon data from the charnockites, mafic granulites and hornblende-biotite gneisses (TTG) presented in our study show that the magma generation during subduction and accretion events in this block occurred at 2700-2500 Ma. Together with the recent report on Neoarchean supra-subduction zone ophiolite suite at its southern margin, the Nilgiri Block provides one of the best examples for continental growth through vertical stacking and lateral accretion in a subduction environment during the Neoarchean. (c) 2014 Elsevier B.V. All rights reserved.