928 resultados para Parametric Linear System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over 60% of the recurrent budget of the Ministry of Health (MoH) in Angola is spent on the operations of the fixed health care facilities (health centres plus hospitals). However, to date, no study has been attempted to investigate how efficiently those resources are used to produce health services. Therefore the objectives of this study were to assess the technical efficiency of public municipal hospitals in Angola; assess changes in productivity over time with a view to analyzing changes in efficiency and technology; and demonstrate how the results can be used in the pursuit of the public health objective of promoting efficiency in the use of health resources. The analysis was based on a 3-year panel data from all the 28 public municipal hospitals in Angola. Data Envelopment Analysis (DEA), a non-parametric linear programming approach, was employed to assess the technical and scale efficiency and productivity change over time using Malmquist index.The results show that on average, productivity of municipal hospitals in Angola increased by 4.5% over the period 2000-2002; that growth was due to improvements in efficiency rather than innovation. © 2008 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In May 2006, the Ministers of Health of all the countries on the African continent, at a special session of the African Union, undertook to institutionalise efficiency monitoring within their respective national health information management systems. The specific objectives of this study were: (i) to assess the technical efficiency of National Health Systems (NHSs) of African countries for measuring male and female life expectancies, and (ii) to assess changes in health productivity over time with a view to analysing changes in efficiency and changes in technology. The analysis was based on a five-year panel data (1999-2003) from all the 53 countries of continental Africa. Data Envelopment Analysis (DEA) - a non-parametric linear programming approach - was employed to assess the technical efficiency. Malmquist Total Factor Productivity (MTFP) was used to analyse efficiency and productivity change over time among the 53 countries' national health systems. The data consisted of two outputs (male and female life expectancies) and two inputs (per capital total health expenditure and adult literacy). The DEA revealed that 49 (92.5%) countries' NHSs were run inefficiently in 1999 and 2000; 50 (94.3%), 48 (90.6%) and 47 (88.7%) operated inefficiently in 2001, 2002, and 2003 respectively. All the 53 countries' national health systems registered improvements in total factor productivity attributable mainly to technical progress. Fifty-two countries did not experience any change in scale efficiency, while thirty (56.6%) countries' national health systems had a Pure Efficiency Change (PEFFCH) index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. All the 53 countries' national health systems registered improvements in total factor productivity, attributable mainly to technical progress. Over half of the countries' national health systems had a pure efficiency index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. African countries may need to critically evaluate the utility of institutionalising Malmquist TFP type of analyses to monitor changes in health systems economic efficiency and productivity over time. African national health systems, per capita total health expenditure, technical efficiency, scale efficiency, Malmquist indices of productivity change, DEA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate second harmonic generation at 1621 nm in a low-loss orientation-patterned GaAs waveguide pumped by an optical parametric oscillator system. The losses were estimated to be 2.12 dB/cm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research partially supported by INTAS grant 97-1644

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work deals with the numerical studies on hydrodynamics of oscillating water column (OWC) wave energy converters and its damping optimization on maximizing wave energy conversion by the OWC device. As a fundamental step, the hydrodynamic problems have been systematically studied by considering the interactions of the wave-structure and of the wave-internal water surface. Our first attention is on how the hydrodynamic performance can be reliably assessed, especially when it comes to the time-domain analysis, and what the physics behind the considerations is. Further on, a damping optimization for the OWC wave energy converter is also present based on the dynamics of the linear system, and a study on how we can optimize the damping for the given sea states so that the power conversion from irregular waves from irregular waves can be maximized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship between industry, waste, and urbanism is one fraught with problems across the United States and in particular American cities. The interrelated nature of these systems of flows is in critical need of re-evaluation. This thesis critiques the system of Municipal Solid Waste Management as it currently exists in American cities as a necessary yet undesirable ‘invisible infrastructure’. Industry and waste environments have been pushed to the periphery of urban environments, severing the relationship between the urban environment we inhabit and the one that is required to support the way we live. The flow of garbage from cities of high density to landscapes of waste has created a model of valuing waste as a linear system that separates input from output. This thesis aims to investigate ways that industry, waste, and urban ecologies can work to reinforce one another. The goal of this thesis is to repair the physical and mental separation of waste and public activity through architecture. This thesis will propose ways to tie urban waste infrastructure and public amenities together through the merging of architecture and landscape to create new avenues for public engagement with waste processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

International audience

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A simple approach is proposed for disturbance attenuation in multivariable linear systems via dynamical output compensators based on complete parametric eigenstructure assignment. The basic idea is to minimise the H-2 norm of the disturbance-output transfer function using the design freedom provided by eigenstructure assignment. For robustness, the closed-loop system is restricted to be nondefective. Besides the design parameters, the closed-loop eigenvalues are also optimised within desired regions on the left-half complex plane to ensure both closed-loop stability and dynamical performance. With the proposed approach, additional closed-loop specifications can be easily achieved. As a demonstration, robust pole assignment, in the sense that the closed-loop eigenvalues are as insensitive as possible to open-loop system parameter perturbations, is treated. Application of the proposed approach to robust control of a magnetic bearing with a pair of opposing electromagnets and a rigid rotor is discussed.