940 resultados para Parallel hot-wire method
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Resumo:
High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.
Resumo:
The purpose of the present paper is to review work that has been done on the pulsed wire anemometer technique and also suggest further developments that could be made in its range of application. The aper discusses the three types of probes that have been used in pulsed wire anemometry: the crossed wire velocity probe, the parallel wire wall shear stress probe and the parallel wire velocity probe. The work shows that the crossed wire and the parallel wire techniques can be used to make velocity, turbulence and wall shear stress measurements in highly turbulent flows without any upper restriction on turbulence level. Comments are also made on the potential of a parallel wire probe for use in highly turbulent flows that would enable higher order velocity cross-product terms to be measured.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
Parallel-connected photovoltaic inverters are required in large solar plants where it is not economically or technically reasonable to use a single inverter. Currently, parallel inverters require individual isolating transformers to cut the path for the circulating current. In this doctoral dissertation, the problem is approached by attempting to minimize the generated circulating current. The circulating current is a function of the generated common-mode voltages of the parallel inverters and can be minimized by synchronizing the inverters. The synchronization has previously been achieved by a communication link. However, in photovoltaic systems the inverters may be located far apart from each other. Thus, a control free of communication is desired. It is shown in this doctoral dissertation that the circulating current can also be obtained by a common-mode voltage measurement. A control method based on a short-time switching frequency transition is developed and tested with an actual photovoltaic environment of two parallel inverters connected to two 5 kW solar arrays. Controls based on the measurement of the circulating current and the common-mode voltage are generated and tested. A communication-free method of controlling the circulating current between parallelconnected inverters is developed and verified.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
It is widely accepted that the classical constant-temperature hot-plate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E2 (0.5 and 1 µg/paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4- and 10-fold lower doses of prostaglandin E2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
Resumo:
Freezing of gait (FOG) can be assessed by clinical and instrumental methods. Clinical examination has the advantage of being available to most clinicians; however, it requires experience and may not reveal FOG even for cases confirmed by the medical history. Instrumental methods have an advantage in that they may be used for ambulatory monitoring. The aim of the present study was to describe and evaluate a new instrumental method based on a force sensitive resistor and Pearson's correlation coefficient (Pcc) for the assessment of FOG. Nine patients with Parkinson's disease in the "on" state walked through a corridor, passed through a doorway and made a U-turn. We analyzed 24 FOG episodes by computing the Pcc between one "regular/normal" step and the rest of the steps. The Pcc reached ±1 for "normal" locomotion, while correlation diminished due to the lack of periodicity during FOG episodes. Gait was assessed in parallel with video. FOG episodes determined from the video were all detected with the proposed method. The computed duration of the FOG episodes was compared with those estimated from the video. The method was sensitive to various types of freezing; although no differences due to different types of freezing were detected. The study showed that Pcc analysis permitted the computerized detection of FOG in a simple manner analogous to human visual judgment, and its automation may be useful in clinical practice to provide a record of the history of FOG.
Resumo:
The objective of this study was to analyze the physicochemical properties and carotenoid levels of pequi oil obtained by different extraction methods and to evaluate the preservation of these properties and pigments during storage time. The pequi oil was obtained by solvent extraction, mechanical extraction, and hot water flotation. It was stored for over 180 days in an amber bottle at ambient conditions. Analyses for the determination of the acidity, peroxide, saponification and iodine values, coloration, total carotenoids, and β-carotene levels were conducted. The oil extraction with solvents produced the best yield and carotenoid levels. The oil obtained by mechanical extraction presented higher acidity (5.44 mg KOH.g-1) and peroxide values (1.07 mEq.kg-1). During the storage of pequi oil, there was an increase in the acidity and the peroxide values, darkening of the oil coloration, and a reduction of the carotenoid levels. Mechanical extraction is the less advantageous method for the conservation of the physicochemical properties and carotenoid levels in pequi oil.