999 resultados para PSI particle
Resumo:
Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.
Resumo:
Al-Si-graphite particle composite alloy pistons containing different percentages of about 80 μm uncoated graphite particles were successfully cast by foundry techniques. Tests with a 5 hp single-cylinder diesel engine show that Al-Si-graphite particle composite pistons can withstand an endurance test of 500 h without any apparent deterioration and do not seize during the running-in period. The use of the Al-Si-3% graphite particle composite piston also results in (a) up to 3% reduction in the specific fuel consumption, (b) considerable reduction in the wear of all four piston rings, (c) a reduction in piston wear, (d) a 9% reduction in the frictional horsepower losses of the engine as determined by the motoring test and (e) a slight increase in the exhaust gas temperature. These reductions (a)–(d) appear to be due to increased lubrication from the graphite particles which are smeared on the bearing surface, the higher damping capacity of the composite pistons and the reduced coefficient of thermal expansion of the composite pistons. Preliminary results indicate that aluminum-graphite particle composite alloy is a promising material for automotive pistons.
Resumo:
Electrical properties of deep defects induced in n-silicon by -particles of about 10 MeV energy at a dose of 1014 and 1015 cm-2 are studied by DLTS. The levels at Ec -0.18 eV, Ec -0.26 eV, and Ec -0.48 eV are identified as A center, V2 (=/-) and V2 (-/0) on the basis of activation energy, electron capture cross section, and annealing behavior. Two other irradiation related levels at Ec -0.28 eV and Ec -0.51 eV could not be related to any known center.
Resumo:
The optimum conditions for producing cast aluminium alloy-mica particle composites, by stirring mica particles (40 to 120 mgrm) in molten aluminium alloys (above their liquidus temperatures), followed by casting in permanent moulds, are described. Addition of magnesium either as pieces along with mica particles on the surface of the melts or as a previously added alloying element was found to be necessary to disperse appreciable quantities (1.5 to 2 wt.%) of mica particles in the melts and retain them as uniform dispersions in castings under the conditions of present investigation. These castings can be remelted and degassed with nitrogen at least once with the retention of about 80% mica particles in the castings. Electron probe micro-analysis of these cast composites showed that magnesium added to the surface of the melt along with mica has a tendency to segregate around the mica particles, apparently improving the dispersability for mica particles in liquid aluminium alloys. The mechanical properties of the aluminium alloy-mica particle composite decrease with an increase in mica content, however, even at 2.2% the composite has a tensile strength of 14.22 kg mm–2 with 1.1% elongation, a compression strength of 42.61 kg mm–2, and an impact strength of 0.30 kgm cm–2. The properties are adequate for certain bearing applications, and the aluminium-mica composite bearings were found to run under boundary lubrication, semi-dry and dry friction conditions whereas the matrix alloy (without mica) bearings seized or showed stick slip under the same conditions.
Resumo:
The spreadability of SAE-30 oil on Al-12 Si base (LM-13) alloy containing dispersed graphite particles about 50 μm average size in its matrix is found to be greater than on either LM-13 with no graphite or brass. It is also found that the spreadability on LM-13 base alloys increase with increasing volume of graphite dispersion in the matrix of these alloys. Further increases in the spreadability of oil on machined LM-13-graphite particle composite test surfaces occur if these are rubbed initially against control discs of either LM-13 or grey cast iron. The formation of a triboinduced graphite-rich layer, confirmed by esca, appears to be responsible for the improved oil spreadability on the rubbed test surfaces of LM-13 base alloys as compared to the as-machined test surfaces prior to rubbing. The triboinduced layer of graphite is apparently responsible for the observed reduction in the friction, wear and seizing tendency of triboelements made from aluminium alloy-graphite particle composites.
Resumo:
Abstract is not available.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.
Resumo:
We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.
Resumo:
Under lubricated conditions, Al-graphite particle composite is a good antiseizure bearing and antifriction material possessing properties which inhibit excessive temperature rise in bearings. The present study characterizes the dry wear properties of the composite. The dry wear characteristics of the Al-(2.7%–5.7% graphite particle) (50–200μm) composite were found to deteriorate with the addition of graphite, load and sliding distance. Both micro structural and microhardness studies of the worn subsurfaces and analysis of wear debris show that the reductions in strength and ductility of the composite due to graphite addition are the most likely causes of deterioration in the wear properties of the composite.
Resumo:
A direct method of preparing cast aluminium alloy-graphite particle composites using uncoated graphite particles is reported. The method consists of introducing and dispersing uncoated but suitably pretreated graphite particles in aluminium alloy melts, and casting the resulting composite melts in suitable permanent moulds. The optical pretreatment required for the dispersion of the uncoated graphite particles in aluminium alloy melts consists of heating the graphite particles to 400° C in air for 1 h just prior to their dispersion in the melts. The effects of alloying elements such as Si, Cu and Mg on the dispersability of pretreated graphite in molten aluminium have also been reported. It was found that additions of about 0.5% Mg or 5% Si significantly improve the dispersability of graphite particles in aluminium alloy melts as indicated by the high recoveries of graphite in the castings of these composites. It was also possible to disperse upto 3% graphite in LM 13 alloy melts and retain the graphite particles in a well distributed fashion in the castings using the pre-heat-treated graphite particles. The observations in this study have been related to the information presently available on wetting between graphite and molten aluminium in the presence of different elements and our own thermogravimetric analysis studies on graphite particles. Physical and mechanical properties of LM 13-3% graphite composite made using pre-heat-treated graphite powder, were found to be adequate for many applications, including pistons which have been successfully used in internal combustion engines.
Resumo:
Considers the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. The authors obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem (1921).
Resumo:
The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the
Resumo:
The amplification mechanism for the side bands which accompany a large amplitude electron wave on a plasma column are shown to arise due to two mode interaction between negative and positive energy waves.
Resumo:
Copper- and nickel-coated graphite particles can be successfully introduced into aluminium-base alloy melts as pellets to produce cast aluminium-graphite particle composites. The pellets were made by pressing mixtures of nickel- or copper-coated graphite particles and aluminium powders together at pressures varying between 2 and 20 kg mm–2. These pellets were dispersed in aluminium alloy melts by plunging and holding them in the melts using a refractory coated mild steel cone, until the pellets disintegrated and the powders were dispersed. The optimum pressure for the preparation of pellets was 2 to 5 kg mm–2 and the optimum size and percentage of aluminium powder were 400 to 1000mgrm and 35 wt% respectively. Under optimum conditions the recovery of the graphite particles in the castings was as high as 96%, these particles being pushed into the last freezing interdendritic regions. The tensile strength and the hardness of the graphite aluminium alloys made using the pellet method are comparable to those of similar composites made using gas injection or the vortex method. The pellet method however has the advantage of greater reproducibility and flexibility. Dispersion of graphite particles in the matrix of cast aluminium alloys using the pellet method increases their resistance to wear.
Resumo:
The effect of a particle size distribution on the fractional reaction has been analysed. The analysis shows that for non-isothermal TG the activation energy and frequency factor evaluated from the fractional reaction by conventional method depend on the particle size distribution, and this may lead to a kinetic compensating effect. Particle size distribution may also lead to an erroneous conclusion about the change in the mechanism of reaction.