967 resultados para PROJECTION OPTICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many ecosystem models have been developed to study the ocean's biogeochemical properties, but most of these models use simple formulations to describe light penetration and spectral quality. Here, an optical model is coupled with a previously published ecosystem model that explicitly represents two phytoplankton (picoplankton and diatoms) and two zooplankton functional groups, as well as multiple nutrients and detritus. Surface ocean color fields and subsurface light fields are calculated by coupling the ecosystem model with an optical model that relates biogeochemical standing stocks with inherent optical properties (absorption, scattering); this provides input to a commercially available radiative transfer model (Ecolight). We apply this bio-optical model to the equatorial Pacific upwelling region, and find the model to be capable of reproducing many measured optical properties and key biogeochemical processes in this region. Our model results suggest that non-algal particles largely contribute to the total scattering or attenuation (> 50% at 660 nm) but have a much smaller contribution to particulate absorption (< 20% at 440 nm), while picoplankton dominate the total phytoplankton absorption (> 95% at 440 nm). These results are consistent with the field observations. In order to achieve such good agreement between data and model results, however, key model parameters, for which no field data are available, have to be constrained. Sensitivity analysis of the model results to optical parameters reveals a significant role played by colored dissolved organic matter through its influence on the quantity and quality of the ambient light. Coupling explicit optics to an ecosystem model provides advantages in generating: (1) a more accurate subsurface light-field, which is important for light sensitive biogeochemical processes such as photosynthesis and photo-oxidation, (2) additional constraints on model parameters that help to reduce uncertainties in ecosystem model simulations, and (3) model output which is comparable to basic remotely-sensed properties. In addition, the coupling of biogeochemical models and optics paves the road for future assimilation of ocean color and in-situ measured optical properties into the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To investigate whether the effects of hybrid iterative reconstruction (HIR) on coronary artery calcium (CAC) measurements using the Agatston score lead to changes in assignment of patients to cardiovascular risk groups compared to filtered back projection (FBP). MATERIALS AND METHODS 68 patients (mean age 61.5 years; 48 male; 20 female) underwent prospectively ECG-gated, non-enhanced, cardiac 256-MSCT for coronary calcium scoring. Scanning parameters were as follows: Tube voltage, 120 kV; Mean tube current time-product 63.67 mAs (50 - 150 mAs); collimation, 2 × 128 × 0.625 mm. Images were reconstructed with FBP and with HIR at all levels (L1 to L7). Two independent readers measured Agatston scores of all reconstructions and assigned patients to cardiovascular risk groups. Scores of HIR and FBP reconstructions were correlated (Spearman). Interobserver agreement and variability was assessed with ĸ-statistics and Bland-Altmann-Plots. RESULTS Agatston scores of HIR reconstructions were closely correlated with FBP reconstructions (L1, R = 0.9996; L2, R = 0.9995; L3, R = 0.9991; L4, R = 0.986; L5, R = 0.9986; L6, R = 0.9987; and L7, R = 0.9986). In comparison to FBP, HIR led to reduced Agatston scores between 97 % (L1) and 87.4 % (L7) of the FBP values. Using HIR iterations L1 - L3, all patients were assigned to identical risk groups as after FPB reconstruction. In 5.4 % of patients the risk group after HIR with the maximum iteration level was different from the group after FBP reconstruction. CONCLUSION There was an excellent correlation of Agatston scores after HIR and FBP with identical risk group assignment at levels 1 - 3 for all patients. Hence it appears that the application of HIR in routine calcium scoring does not entail any disadvantages. Thus, future studies are needed to demonstrate whether HIR is a reliable method for reducing radiation dose in coronary calcium scoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Health Planning and Resources Development Act of 1974 (Public Law 93-641) requires that health systems agencies (HSAs) plan for their health service areas by the use of existing data to the maximum extent practicable. Health planning is based on the identificaton of health needs; however, HSAs are, at present, identifying health needs in their service areas in some approximate terms. This lack of specificity has greatly reduced the effectiveness of health planning. The intent of this study is, therefore, to explore the feasibility of predicting community levels of hospitalized morbidity by diagnosis by the use of existing data so as to allow health planners to plan for the services associated with specific diagnoses.^ The specific objectives of this study are (a) to obtain by means of multiple regression analysis a prediction equation for hospital admission by diagnosis, i.e., select the variables that are related to demand for hospital admissions; (b) to examine how pertinent the variables selected are; and (c) to see if each equation obtained predicts well for health service areas.^ The existing data on hospital admissions by diagnosis are those collected from the National Hospital Discharge Surveys, and are available in a form aggregated to the nine census divisions. When the equations established with such data are applied to local health service areas for prediction, the application is subject to the criticism of the theory of ecological fallacy. Since HSAs have to rely on the availability of existing data, it is imperative to examine whether or not the theory of ecological fallacy holds true in this case.^ The results of the study show that the equations established are highly significant and the independent variables in the equations explain the variation in the demand for hospital admission well. The predictability of these equations is good when they are applied to areas at the same ecological level but become poor, predominantly due to ecological fallacy, when they are applied to health service areas.^ It is concluded that HSAs can not predict hospital admissions by diagnosis without primary data collection as discouraged by Public Law 93-641. ^