924 resultados para POLYPROPYLENE MESH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological features of isotactic polypropylene (iPP) and high impact polypropylene (hiPP) particles produced in a multistage polymerization process were investigated by field-emission electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. Study was mainly focused on architecture of iPP particle and distribution of elastomer phase (EPR) within the preformed iPP matrix. The iPP particle is an agglomerate of many subglobules (ca. several to hundred microns in diameter), while the subglobule in turn is formed by a great deal of primary globules (ca. 100 nm in diameter). Large macropores between the subglobules and finely distributed micropores within the subglobule constitute a network of pore inside the iPP particle. Ethylene/propylene comonomers can diffuse into the macro- and micropores and copolymerize on catalyst active sites located on periphery of the pores, forming elastomer phase inside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth oxide, neodymium oxide (Nd2O3), CO-catalyzed melt grafting of maleic anhydride (MAH) onto co-polypropylene (co-PP) in the presence of dicumyl peroxide (DCP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 as a coagent leads to an enhancement in both MFR and the grafting degree of MAH, along with a simultaneous decrease in the gel content. When the Nd2O3 concentration is 6.0 mmol%, the increment of the grafting degree of MAH maximally is up to about 20% compared with the related system without adding Nd2O3, and the gel content decreases simultaneously to a very low level of about 3%. Attenuated total reflection FTIR (ATR-FTIR) indicates that the gel in the graft copolymers mainly arise from the cross-linking reaction between ethylene units of co-PP. A reasonable reaction mechanism has been put forward on the basis of our experimental results and other mechanisms reported in the literature. We also tentatively explain above results by means of synergistic effect between DCP and Nd2O3, which causes a higher concentration of the macroradical, in particular the tertiary macroradical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of crystallization temperature (T,), glass bead content and its size on the, formation of beta-crystal and structural stability of originally formed beta-crystal in glass bead filled polypropylene (PP) were examined. The differential scanning calorimetry (DSC) measurements indicated that the amount of beta-phase in PP crystals was a function of the crystallization temperature and glass bead content. For a constant crystallization temperature, it was observed that the amount of beta-crystal initially increased with increase in glass bead content up to 30 wt.%, and then decreased slightly with further increase in the filler content. From the DSC data, a disorder parameter (S) was derived to define the structural stability of originally formed beta-crystals. The structural stability of originally formed beta-crystals was enhanced with increase in either the crystallization temperature or the glass bead content. Also, the influence of glass bead size (4-66 mu m) on the formation and stability of beta-crystals in PP/glass bead blends was studied. Large glass bead particles suppressed the formation and decreased the stability of beta-crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melt rheological properties of binary uncompatibilized polypropylene -polyamide6 (PP-PA6) blends and ternary blends compatibilized with maleic anhydride-grafted PP (PP-PP-g-MAH-PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value delta between these two series of data was obtained. In binary PP-PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and delta was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of delta increased with the dispersed phase composition. In ternary PP-PP-g-MAH-PA6 systems, when the compatibility between PP and PA6 was enhanced by PP-g-MAH, the elongation and break-up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the delta values of the ternary blends and the larger the positive deviation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a successful application of the concept of nanoreactors to effectively controlling the selectivity of the free radical grafting of maleic anhydride (MAH) onto polypropylene (PP) in the melt, an industrially relevant process. More specifically, a free radical initiator of type ROOR was first confined into (or encapsulated by) the galleries of an organically modified montmorillonite (o-MMT) whose interdistance was 2.4 nm. Primary free radicals (RO center dot) formed inside the o-MMT galleries had to diffuse out before they could react with the PP backbone. The controlled release of the primary free radicals significantly increased the grafting degree of MAH onto PP and greatly reduced the level of the chain scission of the latter. Those results were better understood by electron spin resonance studies on model systems and by Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the glass-bead content and size on the nonisothermal crystallization behavior of polypropylene (PP)/glass-bead blends were studied with differential scanning calorimetry. The degree of crystallinity decreased with the addition of glass bead, and the crystallization temperature of the blends was marginally higher than that of pure PP at various cooling rates. Furthermore, the half-time for crystallization decreased with an increase in the glass-bead content or particle size, implying the nucleating role of the glass beads. The nonisothermal crystallization data were analyzed with the methods of Avrami, Ozawa, and Mo. The validity of various kinetic models for the nonisothermal crystallization process of PP/glass-bead blends was examined. The approach developed by Mo successfully described the nonisothermal crystallization behavior of PP and PP/glass-bead blends. Finally, the activation energy for the nonisothermal crystallization of pure PP and PP/glass-bead blends based on the Kissinger method was evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported nickel catalyst (Ni-Cat) was used as a catalyst to improve the flame retarclancy of intumescent flame-retardants (IFR) systems based on ammonium polyphosphate and pentaerythritol (PETOL) in polypropylene (PP) matrix. Limited oxygen index (LOI), UL-94 rating, and thermogravimetric analysis were used to characterize the flame retardancy and thermal stability of the PP systems, and field emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the microstructure and composition of the chars formed during measuring LOI value and after combustion at 800 degrees C. The catalytic effect of NiCat was shown in an increase of LOI, a change in the char microstructure, and improvement of the thermal stability in the PP systems, which result from the synergistic effect of Ni-Cat and IFR. The results from FE-SEM and FTIR spectra of the char can explain how this synergistic effect happened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth oxide, neodymium oxide (Nd2O3), -assisted melt free-radical grafting of maleic anhydride (MAH) on isotactic-polypropylene (i-PP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 into reactive system leads to an enhancement of the grafting degree of MAH, along with an elevated degradation of i-PP matrix. When Nd2O3 content is 4.5 mmol %, the increment of the grafting degree of MAH (maximally) is up to about 30% compared with that of the related system without adding Nd2O3, while the severest degradation of i-PP matrix simultaneously occurs. On the basis of the reaction mechanism of PP-g-MAH proposed before, the sequence of beta-scission and grafting reaction is discussed in detail. It is found that, for the reactive system studied, most tertiary macroradicals first undergo beta-scission, and then, grafting reaction with MAH takes place at the new radical chain ends. The imported Nd2O3 has no effect on the aforementioned reaction mechanism, whereas it enhances the initiating efficiency of the initiator, dicumyl peroxide (DCP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The graft of maleic anhydride (MAH) onto isotactic polypropylene (iPP) initiated by dicumyl peroxide (DCP) at 190 degreesC was studied by means of the Monte Carlo method. The ceiling temperature theory, i.e., no possibility for the homopolymerization of MA-H to occur at higher temperatures, was used in this study. The simulation results show that most MAH monomers were grafted onto the radical chain ends arising from beta scission at a lower MAH concentration, whereas the amount of MAH monomers attached to the tertiary carbons was much larger than that grafted onto the radical chain ends at a higher MAH concentration for various DCP concentrations. This conclusion gives a good interpretation for the disagreement on the grafting sites along a PP chain. Moreover, it was found that the grafting degree increased considerably up to a peak value; thereafter, it decreased continuously with increasing MA-H concentration. The peak shifted in the lower MAH concentration direction and became lower and lower with increasing DCP concentration. When the DCP concentration was below 0.1 wt %, the peak was hardly observed. Those results are in good agreement with the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of organically modified clays (OMCs) with a surfactant loading range from 0.625 to 2.5 times the cation exchange capacity (CEC) were melt-mixed with maleated polypropylene (PPMA). Wide-angle X-ray diffraction and transmission electron microscopy results of these narrocomposites show that dispersion of clays becomes unfavorable in the PPMA matrix during melt intercalation as the surfactant loading increases in the process of modifying clays, though larger interlayer distances are obtained in their corresponding OMCs. It is even important that clays uniformly disperse at the nanoscale level in the PPMA matrix when the surfactant loadings are below the CEC, which implies that incomplete exchange of inorganic cations in the process of modifying clay benefits the dispersion of clays in the PPMA matrix.