856 resultados para PHENOLIC ACIDS
Resumo:
Purpose: This study aims to analyze the soursop and sugar apple seeds as to its composition, to evaluate the antioxidant potential of seeds extract and characterize the oil extracted from them, regarding the fatty acids profile and content of tocopherols. Design/methodology/approach: To obtain the extracts, dried and crushed seeds were extracted with ethanol for 30 minutes, at a ratio of 1:3 (m/m, seed: ethyl alcohol) under continuous stirring at room temperature. Then, the mixture was filtered and the supernatants subjected to rotoevaporator at 40°C aiming to determine, by direct weighing, the yields of dry extracts. Findings: According to the results, the soursop and sugar apple seeds constituted significant sources of lipids, proteins and carbohydrates and can therefore be used in food and feed, and offer relevant antioxidant activity of phenolic compounds. The oil seeds are a good source of unsaturated fatty acids, especially oleic and linoleic acids and they have significant amounts of total tocopherol. Research limitations/implications: Implications are the identification of bioactive compounds extracted from seeds of tropical and subtropical fruits, and to prevent certain types of diseases. Practical implications: The information presented might be directly used for developing of functional foods such as fruits. Originality/value: The article tries to identify new source of compounds extracted from fruits. © Emerald Group Publishing Limited.
Resumo:
Physico-chemical characteristics, fatty acid and tocopherol compositions, total phenolic content and antioxidant activity of crude oil extracted from guava (Psidium guajava var. pomifera) seeds were investigated. Oil yield from the seeds was 14.0%. Data obtained for the analytical indexes compared well with those of others edible oils. The oil showed high levels of unsaturated fatty acids (88.1%), mainly linoleic acid (78.4%). The tocopherol and total phenolic contents in the oil amounted to 29.2 and 92.3 mg/100 g, respectively. The guava seed oil exhibited a great DPPH · scavenging activity showing EC50 of 12.9 g oil/g [DPPH · ] -1 and antiradical efficiency of 7.9×10 -2 . Therefore, the potential utilization of the guava seed oil as a raw material of food, chemical and pharmaceutical industries appears to be favourable and provides the use of a renewable resource, adding value to agricultural products.
Resumo:
The grape is considered a major source of phenolic compounds when compared to other fruits and vegetables, however, there are many cultivars with distinct characteristics directly linked to phenolic profile. Thus, the present study aimed to identify and quantify, for the first time and in detail, the phenolic compounds present in the skin, flesh and seeds of BRS Violeta grape berry using combination of SPE methodologies and analytical HPLC-DAD-ESI-MS/MS. The study was extended to the different berry parts and the most important grape and wine phenolic families, and has revealed interesting features. Violeta grape has a very thick skin (46% of grape weight) that accumulated the most of grape phenolic compounds: great amount of anthocyanins (3930. mg/kg, as malvidin 3,5-diglucoside), together with also important amounts of flavonols (150. mg/kg, as quercetin 3-glucoside), hydroxycinnamic acid derivatives (HCAD; 120. mg/kg, as caftaric acid), and proanthocyanidins (670. mg/kg, as (+)-catechin); in contrast, it seems to be a low resveratrol producer. Violeta grape seeds accounted for similar proportions of low molecular weight flavan-3-ols (mainly monomers; 345. mg/kg, as (+)-catechin) and proanthocyanidins (480. mg/kg, as (+)-catechin). Violeta grape is a teinturier cultivar, but it only contained traces of anthocyanins and low amounts of all the other phenolic types in its red-colored flesh. The anthocyanin composition of Violeta grape was dominated by anthocyanidin 3,5-diglucosides (90%). Within flavonols, myricetin-type predominated and kaempferol-type was missing. In addition to expected hydroxycinnamoyl-tartaric acids, several isomeric esters of caffeic and p-coumaric acids with hexoses were tentatively identified, accounting for relevant proportions within the pool of HCAD. Although pending of further confirmation over successive vintages, the aforementioned results suggest that BRS Violeta grape cultivar could be considered an interesting candidate for the elaboration of highly colored and antioxidant-rich grape juices and wines. © 2013 Elsevier Ltd.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
Vegetables are widely consumed in Brazil and exported to several countries. This study was performed to evaluate the phenolic content and antioxidant activity of vegetables commonly consumed in Brazil using five different methods, namely DPPH and ABTS free radical, beta-carotene bleaching, reduction of Fe3+ (FRAP), oxidative stability in Rancimat, and the chemical composition using gas chromatography-mass spectrometry (GC-MS). The content of phenolic compounds ranged from 1.2 mg GA/g (carrot) to 16.9 mg GA/g (lettuce). Vegetables presenting the highest antioxidant activity were lettuce (77.2 mu mol Trolox/g DPPH center dot; 447.1 mu mol F2+/g FRAP), turmeric (118.6 mu mol Trolox/g ABTS(center dot+); 92.8% beta-carotene), watercress and broccoli (protective factor 1.29-Rancimat method). Artichoke, spinach, broccoli, and asparagus also showed considerable antioxidant activity. The most frequent phenolic compounds identified by GC-MS were ferulic, caffeic, p-coumaric, 2-dihydroxybenzoic, 2,5-dihydroxybenzoic acids, and quercetin. We observed antioxidant activity in several vegetables and our results point out their importance in the diet.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
(Table 5) Oxygen-bearing functional groups in humic acids in bottom sediments of the Western Pacific
Resumo:
Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.
Resumo:
The phenolic ellagic acid (EA) is receiving increasing attention for its nutritional and pharmacological potential as an antioxidant and antimicrobial agent. The Australian native Kakadu plum (Terminalia ferdinandiana) fruit is an abundant source of this phytochemical. The fruit also contains large amounts of vitamin C (mainly as ascorbic acid, AA) and possibly the undesirable oxalic acid (OA). Regular consumption of high oxalate foods poses a variety of health risks in humans including interference with calcium absorption and kidney stone formation. Oxalate is also the end-product of AA metabolism so that consumption of fruit with heightened AA content has the potential to elevate urinary oxalate levels. The aims of this study were to investigate the distribution of EA and the presence of other bioactives in other Kakadu plum tissues. Chemical analysis of Kakadu plum fruit and leaves for EA (free and total), OA (water-soluble and total), calcium (Ca) and AA indicated that EA and AA concentrations were high in the fruit while the leaves had significantly higher EA levels but little or no detectable AA. OA content in fruit and leaves was substantial with the fruit being placed in the high-Oxalate category. These findings suggest that there is potential to elevate oxalate levels in the urine of susceptible people and intake of fruit-derived products should be closely monitored. By measuring tissues collected from specific trees, high EA-producing or low OA-containing individuals were identified.
Resumo:
Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle), belonging to the Asteraceae family, are medicinal plants vo.ith well-reported antioxidant and hepatoprotective effects. Widely consumed as infusions, these plants can also be found in several formulations to allow an easier consumption. The bioactivity of infusions, pills, and syrups based on artichoke and milk thistle was previously reported by our research group [1 ,2] and among the various phytochemicals present in these dietary supplements, phenolic compounds are pointed out as the most responsible for their beneficial properties. With the aim of studying the antimicrobial activity and possible relation vo.ith the phenolic composition, two different formulations of each plant were assessed (pills and syrups). The phenolic profiles were obtained by HPLC-DAD-ESIIMS, and the antimicrobial activity was performed with clinical isolates from hospitalized patients, namely Escherichia coli, Escherichia coli spectrum extended producer of P-lactarnases (ESBL), Proteus mirabilis, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA). Vanillic acid (5.58 J.tg/g) and luteolin-7-0-glucoside (2.2 J.tg/g) were the most abundant compounds in artichoke syrup, that did not reveal antimicrobial activity against the studied strains, which could be due to their low concentrations. On the other hand, artichoke pills presented a prevalence of 5-0-caffeoylquinic (28.2 J.tg/g), 1,3-dicaffeoylquinic (24 J.tg/g), and 4-0-Caffeoylquinic acids (13.3 J.tg/g); revealing the capacity to inhibit MRSA vo.ith a MIC value of 1.9 mg!g. Regarding milk thistle, isorhamnetin-0-deoxyhexoside-0-hexoside, isorhamnetin-3-0-rutinoside, and isorhamnetin-0-deoxyhexoside-0-dihexoside were the major compounds detected in the syrup, in concentrations of 7.26, 5. 75, and 3.64 J.tg/g, respectively. This formulation proved to be able to inhibit the growth of E. coli, ESBL, MRSA and P. aeruginosa, with MIC values ranging from 0.2 to 1.3 mg!mL. Hydroxylated silibinin (1.565 J.!g/g) was the major flavonoid found in the pills, that revealed antimicrobial activity against ESBL, with a MIC value of 15 mg!mL, but did not inhibit the growth of the remaining bacteria None of the studied samples was able to inhibit P. mirabilis at the studied concentrations (1000 and 26.4 mg!mL for the syrups of artichoke and milk thistle, respectively; 150 mg/mL for both pills). Overall, the studied syrups and pills of artichoke and milk thistle revealed to be a good source of phenolic compounds, with some of these formulations revealing antimicrobial activity.
Resumo:
Cochlospermum angolensis Welw. (borututu) is a widespread tree in Angola that belongs to the Cochlospermaceae family. Its bark infusion is used in the traditional medicine of Angola for the treatment of jaundice, hepatic diseases and for the prophylaxis of malaria [1]. In the present work, three formulations based on this plant (infusion, pills, and syrup) were characterized by HPLC-DAD-ESI/MS regarding phenolic composition, and evaluated by their in vitro antimicrobial activity against isolates of multiresistant bacteria (Escherichia coli, Escherichia coli spectrum extended producer of β-lactamases (ESBL), Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). The infusion and pills revealed the highest variety of phenolic compounds, with eleven compounds identified. Protocatechuic acid was only present in infusions, being the most abundant compound, while (epi)gallocatechin-O-gallate and eucaglobulin/globulusin were the main molecules identified in pills and syrup, respectively. Methyl ellagic acids, eucaglobulin/globulusin B (Fig. 1) and (epi)gallocatechin-O-gallate were found in all the formulations. The infusion revealed antimicrobial activity against all the studied bacteria with the exception of P. mirabilis whereas the pills revealed activity in E. coli ESBL and MRSA. No significant antimicrobial activity was detected in the syrup, in agreement with its low concentrations of phenolic compounds. None of the tested formulations inhibited P. mirabilis. Considering the obtained results, C. angolensis infusion can be considered a good source of phenolic compounds as well as a good antimicrobial agent.
Resumo:
In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.
Resumo:
Genipap fruits, native to the Amazon region, were classified in relation to their stage of ripeness according to firmness and peel color. The influence of the part of the genipap fruit and ripeness stage on the iridoid and phenolic compound profiles was evaluated by HPLC-DAD-MS(n), and a total of 17 compounds were identified. Geniposide was the major compound in both parts of the unripe genipap fruits, representing >70% of the total iridoids, whereas 5-caffeoylquinic acid was the major phenolic compound. In ripe fruits, genipin gentiobioside was the major compound in the endocarp (38%) and no phenolic compounds were detected. During ripening, the total iridoid content decreased by >90%, which could explain the absence of blue pigment formation in the ripe fruits after their injury. This is the first time that the phenolic compound composition and iridoid contents of genipap fruits have been reported in the literature.
Resumo:
The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.
Resumo:
Ceylon gooseberry is a deep-purple exotic berry that is being produced in Brazil with great market potential. This work aimed to determine major phenolic compounds in this specie by HPLC-PDA-ESI/MS. Samples were collected in two different seasons. Pulp and skin were analyzed separately. Non-acylated rutinoside derivatives of delphinidin (∼60-63%) and cyanidin (∼17-21%) were major anthocyanins tentatively identified. All anthocyanins had higher concentration in skin than in pulp (64-82 and 646-534mg of cyaniding-3-glucoside equivalents/100g skin and pulp, respectively). Moreover, anthocyanin profile changed between sampling dates (p<0.05). Mainly for delphinidin-3-rutinoside which could be a result of season variation. In this specie, non-anthocyanin polyphenols represent less than 35% of total extracted polyphenols. The tentative identification proposed a flavonol and three ellagitannins as major compounds of the non-anthocyanin phenolics fraction. Finally, anthocyanin is the major phenolic class in this fruit and its composition and content are significantly affected by season.