968 resultados para PDP-11 (Computer)
Resumo:
Computer programming is known to be one of the most difficult courses for students in the first year of engineering. They are faced with the challenge of abstract thinking and gaining programming skills for the first time. These skills are acquired by continuous practicing from the start of the course. In order to enhance the motivation and dynamism of the learning and assessment processes, we have proposed the use of three educational resources namely screencasts, self-assessment questionnaires and automated grading of assignments. These resources have been made available in Moodle which is a Learning Management System widely used in education environments and adopted by the Telecommunications Engineering School at the Universidad Politécnica de Madrid (UPM). Both teachers and students can enhance the learning and assessment processes through the use of new educational activities such as self-assessment questionnaires and automated grading of assignments. On the other hand, multimedia resources such as screencasts can guide students in complex topics. The resources proposed allow teachers to improve their tutorial actions since they provide immediate feedback and comments to students without the enormous effort of manual correction and evaluation by teachers specially taking into account the large number of students enrolled in the course. In this paper we present the case study where three proposed educational resources were applied. We describe the special features of the course and explain why the use of these resources can both enhance the students? motivation and improve the teaching and learning processes. Our research work was carried out on students attending the "Computer programming" course offered in the first year of a Telecommunications Engineering degree at UPM. This course is mandatory and has more than 450 enrolled students. Our purpose is to encourage the motivation and dynamism of the learning and assessment processes.
Resumo:
La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.
Resumo:
Fragments of proteins (short peptides) that "fold" suggest a mechanism of how complete conformational search in protein folding is avoided. We used a computational method to determine structures of two foldable peptides in explicit water: RVEW and CSVTC. The optimization starts from random structures and no experimental constraints are used. In agreement with NMR data, the simulations find a hydrophobic pair (Val/Trp) in REVW. The structure of CSVTC is induced by a surface water that bridges two amide hydrogens, a drive to structure hypothesized by Ben-Naim [Ben-Naim, A. (1990) J. Chem. Phys. 93, 8196-8210] that is largely ignored in studies of folding. Tendency to structure in short peptide chains suggests a mechanism for the formation of short-range nucleation sites in protein folding.
Resumo:
In this paper we describe an hybrid algorithm for an even number of processors based on an algorithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.
Resumo:
The evidence suggests that emotional intelligence and personality traits are important qualities that workers need in order to successfully exercise a profession. This article assumes that the main purpose of universities is to promote employment by providing an education that facilitates the acquisition of abilities, skills, competencies and values. In this study, the emotional intelligence and personality profiles of two groups of Spanish students studying degrees in two different academic disciplines – computer engineering and teacher training – were analysed and compared. In addition, the skills forming part of the emotional intelligence and personality traits required by professionals (computer engineers and teachers) in their work were studied, and the profiles obtained for the students were compared with those identified by the professionals in each field. Results revealed significant differences between the profiles of the two groups of students, with the teacher training students scoring higher on interpersonal skills; differences were also found between professionals and students for most competencies, with professionals in both fields demanding more competencies that those evidenced by graduates. The implications of these results for the incorporation of generic social, emotional and personal competencies into the university curriculum are discussed.
Resumo:
Mode of access: Internet.
Resumo:
"This work was submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, June 1967, and was supported in part by the AEC under Contract No. USAEC AT(11-1)1018.
Resumo:
On cover: COO-1469-0106.
Resumo:
"C00-2118-0048."
Resumo:
"This work was supported in part by the Atomic Energy Commission and the Office of Naval Research under AEC Contract AT(11-1)-415."
Resumo:
"Supported in part by Atomic Energy Commission Contract AT(11-1)-1469."