830 resultados para PARALLEL MEDICINE 


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015). 13 to 17, Apr, 2015, Embedded Systems. Salamanca, Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Article in Press, Corrected Proof

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper/Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. The advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictable high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. To this end, it is of paramount importance to develop new techniques for exploiting the massively parallel computation capabilities of such platforms in a predictable way. P-SOCRATES will tackle this important challenge by merging leading research groups from the HPC and EC communities. The time-criticality and parallelisation challenges common to both areas will be addressed by proposing an integrated framework for executing workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The project will investigate new HPC techniques that fulfil real-time requirements. The main sources of indeterminism will be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.