999 resultados para P-32-p-33 Double Isotope Labeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composition and abundance of modern benthic foraminifers in the littoral zone of the Kunashir Island (South Kuriles) were studied. This littoral zone was examined on the sides of the Sea of Okhotsk, the Pacific Ocean, and the Izmena Bay. In the littoral zone of the Izmena Bay benthic foraminifers were not found. The highest biodiversity and maximal density of foraminifers were observed at a bench among rocks and blocks, in depressions of various size and depth (baths), at places where algae and water plants were attached, on silty sands, and on sands with admixture of broken shells, silt, and clastic matter composing the coast. The lowest density and biodiversity were found in mouths of creeks and rivers, on rock plates free from sediments and attached algae and water plants, as well as in places not protected from wind and wave activity. It was established that on both sides of the Sea of Okhotsk and of the Pacific Ocean foraminiferal complexes vary both in biodiversity and in density of their distribution in the littoral zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particular features of tectonic structure and anomalous distribution of geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. Age of the South Okhotsk Basin is confirmed by data on kinematics and corresponds to 50 km thickness of the lithosphere. This is in accordance with thickness value obtained by magnetotelluric soundings. Comparative analysis of model geothermal background and measured heat flow values on the Akademii Nauk Rise is performed. Analysis points to abnormally high (~20%) measured heat flow agrees with high negative gradient of gravity anomalies. Estimates of deep heat flow and basement age of riftogenic basins in the Sea of Okhotsk were carried out in the following areas: Deryugin Basin (18 Ma, Early Miocene), TINRO Basin (12 Ma, Middle Miocene), and West Kamchatka Basin (23 Ma, Late Oligocene). Temperatures at boundaries of the main lithological complexes of the sedimentary cover are calculated and zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data a kinematic model of the region of the Sea of Okhotsk for period of 36 Ma was calculated and constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the distribution of benthic foraminifera and sediment type and depositional environment in the Arabian Sea is discussed. The benthic foraminiferal fauna were sampled in nineteen Recent surface sediment samples, and geochemical variables of the sediment of the same samples were measured. The water depths for the box core samples varies from 440 to 4040 m. A total of 103 species and six species-complexes were identified. The geochemical properties were found to correspond well to the sediment type and depositional environment and six different sediment/depositional environment types could be distinguished. Analysis of the benthic foraminiferal fauna reveals specific faunal assemblages that are closely related to these sediment/depositional environment types.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Chemical composition of water determines its physical properties and character of processes proceeding in it: freezing temperature, volume of evaporation, density, color, transparency, filtration capacity, etc. Presence of chemical elements in water solution confers waters special physical properties exerting significant influence on their circulation, creates necessary conditions for development and inhabitance of flora and fauna, and imparts to the ocean waters some chemical features that radically differ them from the land waters (Alekin & Liakhin, 1984). Hydrochemical information helps to determine elements of water circulation, convection depth, makes it easier to distinguish water masses and gives additional knowledge of climatic variability of ocean conditions. Hydrochemical information is a necessary part of biological research. Water chemical composition can be the governing characteristics determining possibility and limits of use of marine objects, both stationary and moving in sea water. Subject of investigation of hydrochemistry is study of dynamics of chemical composition, i.e. processes of its formation and hydrochemical conditions of water bodies (Alekin & Liakhin 1984). The hydrochemical processes in the Arctic Ocean are the least known. Some information on these processes can be obtained in odd publications. A generalizing study of hydrochemical conditions in the Arctic Ocean based on expeditions conducted in the years 1948-1975 has been carried out by Rusanov et al. (1979). The "Atlas of the World Ocean: the Arctic Ocean" contains a special section "Hydrochemistry" (Gorshkov, 1980). Typical vertical profiles, transects and maps for different depths - 0, 100, 300, 500, 1000, 2000, 3000 m are given in this section for the following parameters: dissolved oxygen, phosphate, silicate, pH and alkaline-chlorine coefficient. The maps were constructed using the data of expeditions conducted in the years 1948-1975. The illustrations reflect main features of distribution of the hydrochemical elements for multi-year period and represent a static image of hydrochemical conditions. Distribution of the hydrochemical elements on the ocean surface is given for two seasons - winter and summer, for the other depths are given mean annual fields. Aim of the present Atlas is description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical information for the years 1948-2000 and using the up-to-date methods of analysis and electronic forms of presentation of hydrochemical information. The most wide-spread characteristics determined in water samples were used as hydrochemical indices. They are: dissolved oxygen, phosphate, silicate, pH, total alkalinity, nitrite and nitrate. An important characteristics of water salt composition - "salinity" has been considered in the Oceanographic Atlas of the Arctic Ocean (1997, 1998). Presentation of the hydrochemical characteristics in this Hydrochemical Atlas is wider if compared with that of the former Atlas (Gorshkov, 1980). Maps of climatic distribution of the hydrochemical elements were constructed for all the standard depths, and seasonal variability of the hydrochemical parameters is given not only for the surface, but also for the underlying standard depths up to 400 m and including. Statistical characteristics of the hydrochemical elements are given for the first time. Detailed accuracy estimates of initial data and map construction are also given in the Atlas. Calculated values of mean-root deviations, maximum and minimum values of the parameters demonstrate limits of their variability for the analyzed period of observations. Therefore, not only investigations of chemical statics are summarized in the Atlas, but also some elements of chemical dynamics are demonstrated. Digital arrays of the hydrochemical elements obtained in nodes of a regular grid are the new form of characteristics presentation in the Atlas. It should be mentioned that the same grid and the same boxes were used in the Atlas, as those that had been used by creation of the US-Russian climatic Oceanographic Atlas. It allows to combine hydrochemical and oceanographic information of these Atlases. The first block of the digital arrays contains climatic characteristics calculated using direct observational data. These climatic characteristics were not calculated in the regions without observations, and the information arrays for these regions have gaps. The other block of climatic information in a gridded form was obtained with the help of objective analysis of observational data. Procedure of the objective analysis allowed us to obtain climatic estimates of the hydrochemical characteristics for the whole water area of the Arctic Ocean including the regions not covered by observations. Data of the objective analysis can be widely used, in particular, in hydrobiological investigations and in modeling of hydrochemical conditions of the Arctic Ocean. Array of initial measurements is a separate block. It includes all the available materials of hydrochemical observations in the form, as they were presented in different sources. While keeping in mind that this array contains some amount of perverted information, the authors of the Atlas assumed it necessary to store this information in its primary form. Methods of data quality control can be developed in future in the process of hydrochemical information accumulation. It can be supposed that attitude can vary in future to the data that were rejected according to the procedure accepted in the Atlas. The hydrochemical Atlas of the Arctic Ocean is the first specialized and electronic generalization of hydrochemical observations in the Arctic Ocean and finishes the program of joint efforts of Russian and US specialists in preparation of a number of atlases for the Arctic. The published Oceanographic Atlas (1997, 1998), Atlas of Arctic Meteorology and Climate (2000), Ice Atlas of the Arctic Ocean prepared for publication and Hydrochemical Atlas of the Arctic Ocean represent a united series of fundamental generalizations of empirical knowledge of Arctic Ocean nature at climatic level. The Hydrochemical Atlas of the Arctic Ocean was elaborated in the result of joint efforts of the SRC of the RF AARI and IARC. Dr. Ye. Nikiforov was scientific supervisor of the Atlas, Dr. R. Colony was manager on behalf of the USA and Dr. L. Timokhov - on behalf of Russia.