1000 resultados para Ozone.
Resumo:
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air + 40 ppb ozone (NF + O-3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF + O-3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40 = 910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF + O-3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF + O-3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r(2) = 0.89; p < 0.05). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Psidium guajava ""Paluma"", a tropical tree species, is known to be an efficient ozone indicator in tropical countries. When exposed to ozone, this species displays a characteristic leaf injury identified by inter-veinal red stippling on adaxial leaf surfaces. Following 30 days of three ozone treatments consisting of carbon filtered air (CF - AOT40 = 17 ppb h), ambient non-filtered air (NF - AOT40 = 542 ppb h) and ambient non-filtered air + 40 ppb ozone (NF + O(3) - AOT40 - 7802 ppb h), the amounts of residual anthocyanins and tannins present in 10 P. guajava (""Paluma"") saplings were quantified. Higher amounts of anthocyanins were found in the NF + O(3) treatment (1.6%) when compared to the CF (0.97%) and NF (1.30%) (p < 0.05), and of total tannins in the NF + O(3) treatment (0.16%) compared to the CIF (0.14%). Condensed tannins showed the same tendency as enhanced amounts. Regression analyses using amounts of tannins and anthocyanins, AOT40 and the leaf injury index (LII), showed a correlation between the leaf injury index and quantities of anthocyanins and total tannins. These results are in accordance with the association between the incidence of red-stippled leaves and ozone polluted environments. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider some non-homogeneous Poisson models to estimate the probability that an air quality standard is exceeded a given number of times in a time interval of interest. We assume that the number of exceedances occurs according to a non-homogeneous Poisson process (NHPP). This Poisson process has rate function lambda(t), t >= 0, which depends on some parameters that must be estimated. We take into account two cases of rate functions: the Weibull and the Goel-Okumoto. We consider models with and without change-points. When the presence of change-points is assumed, we may have the presence of either one, two or three change-points, depending of the data set. The parameters of the rate functions are estimated using a Gibbs sampling algorithm. Results are applied to ozone data provided by the Mexico City monitoring network. In a first instance, we assume that there are no change-points present. Depending on the adjustment of the model, we assume the presence of either one, two or three change-points. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.
Resumo:
A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O(2) ((1)Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O(2) ((1)Delta(g)). On the basis of (18)O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5 alpha-hydroperoxide (5 alpha-OOH) (the major product of O(2) ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O(2) ((1)Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5 alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O(2) ((1)Delta(g)) and raises questions about the role of ozone in biological processes.
Resumo:
Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxyaldehyde (1a) and 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and la is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between la with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5 alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.
Resumo:
A new electrochemical methodology has been developed for the detection of ozone using multiwalled carbon nanotubes (MWCNT). The method presented here is based on the reaction of ozone with indigo blue dye producing anthranilic acid (ATN). The electrochemical profile of ATN on an electrode of glassy carbon (GC) modified with MWCNT showed an oxidation peak potential at 750 mV vs. Ag/AgCl. An analytical method was developed using differential pulse voltammetry (DPV) to determine ATN in a range of 50-400 nmol L(-1), with a detection limit of 9.7 nmol L(-1). Ozonated water samples were successfully analyzed by GC/MWCNT electrode and the recovery procedure yielded values between of 96.5 and 102.3%.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ozone monitoring techniques utilize expensive instruments that are often large and heavy. These instruments are not easy to handle in the field, and their size also limits some sampling schemes, principally for indoor ozone determination. We have developed a lightweight, inexpensive, and sensitive method that offers flexibility to undertake measurements of ambient ozone in many environments, both indoor and outdoor. The method is based on the reaction of ozone with indigo blue dye. The indigo molecule contains 1 carbon double bond (C = C) that reacts with ozone and results in nearly colorless reaction products. During sample collection, 2 cellulose filters coated with 40 mu L of 1.0 x 10(-3) M indigo blue were used. The determinations were done spectrophotometrically at 250 and 600 nm. The analytical parameters studied were sampling time and flow rate. Analytical curves were constructed with concentrations ranging from 37 to 123 parts per billion by volume (ppbv) of standard ozone, at 0.4 L/min and 15 min sampling time. The detection limits achieved were 6 and 9 ppbv, respectively, at 250 and 600 nm. Considering interferences, measurements made at 250 nm gave more reliable and specific values for ozone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change) UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF) needed for the conversion of O-3 slant column densities into vertical column amounts. The most important improvement is the use of O-3 AMF look-up tables calculated using the TOMS V8 (TV8) O-3 profile climatology, that allows accounting for the dependence of the O-3 AMF on the seasonal and latitudinal variations of the O-3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Systeme d'Analyse par Observation Zenithale) network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOMEGDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44 degrees N, 5.5 degrees E) and Sodankyla (67 degrees N, 27 degrees E), respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O-3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i) a possible problem in the satellite retrieval algorithms in dealing with the temperature dependence of the ozone cross-sections in the UV and the solar zenith angle (SZA) dependence, (ii) zonal modulations and seasonal variations of tropospheric ozone columns not accounted for in the TV8 profile climatology, and (iii) uncertainty on the stratospheric ozone profiles at high latitude in the winter in the TV8 climatology. For those measurements mostly sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, or to SZA like SCIAMACHY-TOSOMI, the application of temperature and SZA corrections results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.