494 resultados para Ortho-phenylenediamine
Resumo:
氮杂环化合物大多数都是具有生理活性的物质,例如喹喔啉化合物与苯二氮卓类化合物,因此研究氮杂环化合物骨架的构建方法具有一定意义。绿色化学的迅速发展迫切要求化学家发展清洁、经济和环境较友好条件下的有机合成方法。其中,水相反应与绿色固体酸催化剂的使用都是实现绿色有机合成的重要途径,它们非常具有潜力,近些年受到了广泛关注。本论文的主要工作是围绕水相及固体酸催化条件下两类具有生物活性的含氮杂环小分子的合成方法而开展的,具体包括以下内容: 1. 研究和探索出了两类绿色固体酸催化剂蒙脱土(Mont. K-10)和杂多酸(H4SiW12O40), 在水相条件下成功合成出喹喔啉化合物的有效方法。两个催化体系都以无毒无公害的水作反应溶剂,实验条件温和,操作安全简便,反应速度快,底物普适性强,产率高,且产物易分离收集。两类固体酸催化剂,对设备腐蚀性小,可回收循环使用,对环境无公害; 蒙脱土催化大部分底物能得到当量产率的产物,硅钨酸催化催化剂负载量小。 2. 实现了无溶剂条件下,以杂多酸(H3PW12O40)作催化剂,高效合成1,5-苯二氮卓衍生物的合成方法。该催化体系具有以下一些优势:实验条件温和,反应速度较快,底物普适性良好,产物易分离收集,反应过程中没有加入其它有机溶剂,绿色环保。 ‘Green Chemistry’ is currently a major issue of modern chemistry. It is widely acknowledged that there is a growing need for more environmentally acceptable processes in the chemical industry. New green catalysts and green reaction media are the important and efficient strategies in green chemistry. New green catalysts include solid acid catalysts, solid base catalysts, metal catalysts not only possess higher activity and selectivity, but also are easily separated from reaction system. Green reaction media include water, supercritical fluids and ionic liquids can not only substitute traditional toxic and harmed organic solvents, but also improve reaction activity and selectivity. Meanwhile water is a promising green reaction medium for use in modern chemistry because it has a number of advantages such as the cheapest solvent available on earth, being non-hazardous and non-toxic to the environment. Solid acids had also attracted much attention for realizing green chemistry due to their unique acidity, high activity and efficiency as organic catalysts. Nitrogen-containing heterocyclic compounds of different ring sizes such as quinoxaline and benzodiazepine are the important pharmacologically active compounds. Due to the wide biological significance of these compounds, the synthesis of these types of compounds have received a great deal of attention. Despite the large availability of methods to construct nitrogen-containing heterocyclic compounds, there is still a strong need to further explore green methods to efficiently and safely synthesize these compounds. Thus, we aim at developing efficient and green methodology for the synthesis of quinoxaline and benzodiazepine carried out under water condition with solid acid catalysts. The contents of this dissertation are listed as the following: 1. We have developed two catalytic systems for the synthesis quinoxaline via the condensation of an aryl 1,2-diamine with a 1,2-diketone compound in the presence of Mont. K-10 or H4SiW12O40 as a catalyst in water solvent. Both of these two methods can be applied to wide range of substrates, tolerating aryl 1,2-diamine/1,2-diketone with the electron donating/drawing substituent. Operational simplicity, the ambient conditions, use of an economically convenient catalyst, use of water as a desirable solvent, high yields and short reaction times are the key features of these two protocols. 2. We developed a convenient and efficient protocol for the synthesis of a variety of 1,5-benzodiazepines in high yields via condensation of aryl o-phenylenediamine derivatives with a variety of ketones using H3PW12O40 as a green recyclable and heterogeneous catalyst under solvent-free condition. The simple experiment procedure combined with ease of recovery and reuse of this catalyst make this procedure quite simple, more convenient and environmentally benign.
Resumo:
2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence derivatization reagent, has been developed for the analysis of aromatic amines. Taking five monocyclic aromatic amines (o-toluidine, aniline, 3,4-dimethylaniline, N-ethyl-p-toluidine, and p-phenylenediamine) as testing compounds, derivatization conditions such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration have been investigated. By a one-step procedure, CEOC reacts readily with the aromatic amines to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. This derivatization reaction could be finished within 20 min even at room temperature. The peak shapes of the derivatized aromatic amines can be improved greatly without any addition of competition amines into the mobile phase. Furthermore, this method can offer excellent quantitative precision with high tolerance of the matrix of samples. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Asymmetric cyclopropanation of olefins was carried out with chiral copper-Schiff base complexes derived from copper acetate monohydrate, substituted salicylaldehydes and a chiral amino alcohol. Substituents on salicylaldehyde framework demonstrate a significant effect on the steroselectivities. Those with electron-withdrawing properties enhance the selectivities, whereas bulky sustituents in ortho position to the phenol hydroxy group decrease the selectivities. An ee of more than 98% was achieved for the reaction of styrene with diazoacetate. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Oligothiophenes (OThs) end-capped with 3-quinolyl or pyridyl with nitrogen atom at meta-, ortho- or para-position were synthesized. The single-crystal structures of the resulting molecules, i.e., o-PyTh4, m-PyTh4, p-PyTh4, QuTh2, and QuTh3, were successfully determined by single-crystal X-ray analysis. Pyridyl end-capped OThs; o-PyTh4, m-PyTh4, and p-PyTh4, adopt the different herringbone packing arrangement in crystals depending on the position of the nitrogen atom because of the presence of weak C-H center dot center dot center dot N hydrogen bonds. The p-PyTh4 molecules are linked each other along the long axis of the molecules to form the extended chains by C-H center dot center dot center dot N dimer synthon. For m-PyTh4, the C-H center dot center dot center dot N interactions two-dimensionally extend through C-H center dot center dot center dot N trimer synthon.
Resumo:
Novel sulfonated poly [bis(benzimidazobenzisoquinolinones)] as hydrolytically and thermooxidatively stable electrolyte for high -temperature fuel cell applications are reported. A series of sulfonated polymers (SPBIBI-x, x refers to molar percentage of sulfonated dianhydride monomer) were synthesized from 6,6'-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), 4,4-binaphthyl-1,1,8,8-tetracarboxylic dianhydride (BTDA), and 3,3'-diaminobenzidine. The chemical structures of those polymers as well as model compounds synthesized from SBTDA and o-phenylenediamine were confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR).
Resumo:
Two novel bis(amine anhydride) monomers, N,N'-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,/N'-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride 11, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthaliniide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method.
Resumo:
A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section.
Resumo:
We first report a simple and rapid electrochemical approach to synthesize novel nanofiber junctions and dendrites of conducting poly(o-phenylenediamine) without any surfactant or template. Through controlling some parameters such as the time and potential of electrodeposition and concentration of the reactant, nanofiber junctions and dendrites of conducting polymer can be easily obtained on the solid surface.
Resumo:
Here we present a simple wet-chemical approach to synthesize flower-like silver nanostrip assembling architecture at room temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images indicate that these microstructures with the diameter of similar to 500nm exhibit hietarchical characteristic. X-ray diffraction (XRD), energy-dispersed X-ray spectroscopy (EDX) and Raman spectroscopy indicate that poly (o-diaminobenzene) (PDB) also exists in the silver hierarchical microstructure.
Resumo:
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole-transporting triphenylamine derivatives [N-(4-octoxylphenyl)diphenylamine, N,N'-di(4-octyloxylphenyl)-N,N'-diphenyl-1,4-phenylenediamine, and N,N'-di(4-octoxylphenyl)-N,N'-diphenylbenzidine] (donor) and electron-transporting oxadiazole unit (2,5-diphenyl-1,3,4-oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor-acceptor (D-A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene.
Resumo:
Chloro( 5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide ( Et4NBr) in combination with bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide ( CHO). Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached 44.9 h(-1) in 9 h, which was 23.8% higher than that from ( TPP)AlCl/Et4NBr binary catalyst. The resulting polycarbonate has carbonate linkage over 93% with number average molecular weight of ( 4.5-6.5) x 10(3) and polydispersity index below 1.10.
Resumo:
Methacrylic acid based inverse opal hydrogels (MIOHs) have been prepared by controlling the synthesis conditions, including cross-linker content, solvent content, and water content in solvent mixtures to explore the effect of the synthesis conditions (especially solvent content and mixture) on the response performance. Various response events (pH, solvent, ionic strength, 1,4-phenylenediamine dihydrochloride (PDA) response) have been investigated. For pH, solvent response, the same response behaviors have been observed: both the increased solvent (only ethanol) content and the enhanced water content in solvent will lead to the reduced response level of MIOHs compared to that of the increased cross-linker content. However, two different kinds of response behaviors for ionic strength response have been found by adjusting the synthesis conditions. The kinetics of pH response shows characteristics of a diffusion-limited process, and the equilibrium response time is about 20 min, which cannot be reduced by changing the synthesis conditions.
Resumo:
For polyamide used in reverse osmosis (RO) membranes, the content of pendant acid groups is critical to its performance. In this work, FTIR was used to analyze the acid contents in the polyamide films prepared via interfacial polymerization of trimesic acid trichloride (TMC) in hexane and 1,3-phenylenediamine (MPDA) in water, and the effects of reaction conditions, including monomer concentrations, time, and temperature, were studied. It was found that more pendant acid groups are present in the polyramide film at higher TMC concentrations or lower MPDA concentrations, and longer reaction times and lower temperatures also favor the formation of the free acids. These results can be explained by the monomer diffusion in the interfacial polymerization process. This work may help the design and fabrication of RO membranes with different hydrophilicity and target performance.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.