993 resultados para Orsini, Fulvio, 1529-1600


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600–1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to colophon (f. 143r), copy completed in the hand of al-Shaykh Muḥammad al-Khurāsānī towards the end of Dhū al-Ḥijjah 1008 AH [July 1600 AD].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current understanding of preindustrial stratospheric age of air (AoA), its variability, and the potential natural forcing imprint on AoA is very limited. Here we assess the influence of natural and anthropogenic forcings on AoA using ensemble simulations for the period 1600 to 2100 and sensitivity simulations for different forcings. The results show that from 1900 to 2100, CO₂ and ozone-depleting substances are the dominant drivers of AoA variability. With respect to natural forcings, volcanic eruptions cause the largest AoA variations on time scales of several years, reducing the age in the middle and upper stratosphere and increasing the age below. The effect of the solar forcing on AoA is small and dominated by multidecadal total solar irradiance variations, which correlate negatively with AoA. Additionally, a very weak positive relationship driven by ultraviolett variations is found, which is dominant for the 11 year cycle of solar variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies and index.