969 resultados para Organic Rankine Cycle (ORC)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1–10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C−1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10–300 μmol Cr mol C−1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary d53Cr record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the consumption of dissolved organic matter (DOM) by bacteria living in untra-oligotrophic artificial or natural seawater, we analyzed the composition of DOM before (timepoint t0, directly after inoculation) and after (timepoint t2, 3 weeks of incubation) growth of the bacteria using Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR-MS). The oligotrophic natural seawater used originates from the South Pacific Gyre. Our data show that the bacteria were able to utilize a variety of different organic compounds. These compounds belong to different chemical compound groups and likely fuel the bacterial energy, carbon and nitrogen requirements under the ultra-oligotrophic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical distribution of organic phosphorus and phosphatase activity was studied in the Southeast Pacific Ocean. The average rate of mineralization of organic phosphorus in the 0-200 m layer was shown to differ by a factor of 5-10 in oligotrophic and eutrophic areas, while residence time of phosphorus in production-destruction cycles differed by a factor of only 2-5, apparently because of both concentration of organic phosphorus and phosphorolysis rate increased simultaneously in the areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two deep-sea sediment cores from the northeastern and the southeastern Arabian Sea were studied in order to reconstruct the palaeoenvironments of the past glacial cycles. Core 136KL was recovered from the high-productivity area off Pakistan within the modern oxygen-minimum zone (OMZ). By contrast, modern primary productivity at the site of MD900963 close to Maldives is moderate and bottom waters are today well oxygenated. For both cores, we reconstructed the changes in palaeoproductivity using a set of biomarkers (alkenones, dinosterol and brassicasterol); the main result is that primary productivity is enhanced during glacial stages and lowered during interstadials. The proxies associated with productivity show a 23 kyr cyclicity corresponding to the precession-related insolation cycle. Palaeoredox conditions were studied in both cores using a new organic geochemical parameter (C35/C31-n-alkane ratio) developed by analysing surface sediments from a transect across the OMZ off Pakistan. The value of this ratio in core 136KL shows many variations during the last 65 kyr, indicating that the OMZ was not stable during this time: it disappeared completely during Heinrich- and the Younger Dryas events, pointing to a connection between global oceanic circulation and the stability of the OMZ. The C35/C31 ratio determined in sediments of core MD900963 shows that bottom waters remained rather well oxygenated over the last 330 kyr, which is confirmed by comparison with authigenic metal concentrations in the same sediments. A zonally averaged, circulation-biogeochemical ocean model was used to explore how the intermediate Indian Ocean responds to a freshwater flux anomaly at the surface of the North Atlantic. As suggested by the geochemical time series, both the abundance of Southern Ocean Water and the oxygen concentration are significantly increased in response to this freshwater perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.