950 resultados para Organic Chemical Synthesis (030503)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, (1)H NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligoarabinofuranoside-containing glycolipids relevant to mycobacterial cell wall components were synthesized in order to understand the functional roles of such glycolipids. A series of linear tetra-, hexa-, octa-and a branched heptasaccharide oligoarabinofuranosides, with 1 -> 2 and 1 -> 5 a-linkages between the furanoside residues, were synthesized by chemical methods from readily available monomer building blocks. Upon the synthesis of glycolipids, constituted with a double alkyl chain-substituted sn-glycerol core and oligosaccharide fragments, biological studies were performed to identify the effect of synthetic glycolipids on the biofilm formation and sliding motilities of Mycobacterium smegmatis. Synthetic glycolipids and arabinofuranosides displayed an inhibitory effect on the growth profile, but mostly on the biofilm formation and maturation. Similarly, synthetic compounds also influenced the sliding motility of the bacteria. Further, biophysical studies were undertaken, so as to identify the interactions of the glycolipids with a pulmonary surfactant protein, namely surfactant protein A (SP-A), with the aid of the surface plasmon resonance technique. Specificities of each glycolipid interacting with SP-A were thus evaluated. From this study, glycolipids were found to exhibit higher apparent association constants than the corresponding oligosaccharide portion alone, without the double alkyl group-substituted glycerol core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-yield six-step synthesis of sequirin D (1a), a naturally occurring norlignan, is described. Michael addition of deoxyanisoin (2) to acrylonitrile gives a ketonitrile (3), which on Wolff–Kishner reduction is reduced and hyrolysed in situ to 4,5-bis-p-methoxyphenylpentanoic acid (4). Cyclodehydration of (4) with polyphosphoric acid, followed by borohydride reduction and dehydration furnishes di-O-methylsequirin D (1b) which affords on demethylation sequirin D (1a) in an overall yield from (2) of 60%. The key synthon (4) has also been prepared by three other routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to convert 2-hydroxy glycol ester to the corresponding corresponding 2-deoxy-2-C-alkyl glycol in a facile manner, through key reactions including (i) C-allylation at C-1, (ii) Wittig reaction, and (iii) Cope rearrangement of a 1,5-diene derivative, is reported. The alpha-anomer of the 1,5-diene derivative underwent Cope rearrangement to afford 2-deoxy-2-C-glycal derivative, whereas the beta-anomer was found to be unreactive. Employing this sequence, was transformed to 3,4,6-tri-O-benzyl-2-deoxy-2-C-alkyl-1,5-anhydro-D-arabino-hex-1-enitol. 2-Deoxy-2-C-alkyl glycol derivative is a suitable glycosyl donor to prepare 2-deoxy-2-C-alkyl glycosides, mediated through haloglycosylation and a subsequent dehalogenation. A number of 2-deoxy-2-C-alkyl glycosides, with both glycosyl and nonglycosyl moieties at the reducing end, are thus prepared from the glycol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A short and efficient chemical synthesis of biologically potent and novel 1-deoxythiosugars is accomplished. Introduction of sulfur mediated by benzyltriethylammonium tetrathiomolybdate, as a sulfur transfer reagent through nucleophilic double displacement of tosylate in alpha,omega-di-O-tosyl aldonolactones in an intramolecular fashion is the key feature. The subsequent reduction of thiosugar lactones with borohydride exchange resin (BER) offers a number of deoxythiosugars in good overall yield. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 degrees C), decomposition temperature (202 degrees C) as that with zinc acetylacetonate (136 degrees C, 220 degrees C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decarboxylation and decarbonylation are important reactions in synthetic organic chemistry, transforming readily available carboxylic acids and their derivatives into various products through loss of carbon dioxide or carbon monoxide. In the past few decades, palladium-catalyzed decarboxylative and decarbonylative reactions experienced tremendous growth due to the excellent catalytic activity of palladium. Development of new reactions in this category for fine and commodity chemical synthesis continues to draw attention from the chemistry community.

The Stoltz laboratory has established a palladium-catalyzed enantioselective decarboxylative allylic alkylation of β-keto esters for the synthesis of α-quaternary ketones since 2005. Recently, we extended this chemistry to lactams due to the ubiquity and importance of nitrogen-containing heterocycles. A wide variety of α-quaternary and tetrasubstituted α-tertiary lactams were obtained in excellent yields and exceptional enantioselectivities using our palladium-catalyzed decarboxylative allylic alkylation chemistry. Enantioenriched α-quaternary carbonyl compounds are versatile building blocks that can be further elaborated to intercept synthetic intermediates en route to many classical natural products. Thus our chemistry enables catalytic asymmetric formal synthesis of these complex molecules.

In addition to fine chemicals, we became interested in commodity chemical synthesis using renewable feedstocks. In collaboration with the Grubbs group, we developed a palladium-catalyzed decarbonylative dehydration reaction that converts abundant and inexpensive fatty acids into value-added linear alpha olefins. The chemistry proceeds under relatively mild conditions, requires very low catalyst loading, tolerates a variety of functional groups, and is easily performed on a large scale. An additional advantage of this chemistry is that it provides access to expensive odd-numbered alpha olefins.

Finally, combining features of both projects, we applied a small-scale decarbonylative dehydration reaction to the synthesis of α-vinyl carbonyl compounds. Direct α-vinylation is challenging, and asymmetric vinylations are rare. Taking advantage of our decarbonylative dehydration chemistry, we were able to transform enantioenriched δ-oxocarboxylic acids into quaternary α-vinyl carbonyl compounds in good yields with complete retention of stereochemistry. Our explorations culminated in the catalytic enantioselective total synthesis of (–)-aspewentin B, a terpenoid natural product featuring a quaternary α-vinyl ketone. Both decarboxylative and decarbonylative chemistries found application in the late stage of the total synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient chemical synthesis of 5a-carba-alpha-D-mannose and its enzymatic elaboration to 5a-carba-alpha-D-mannose-6-phosphate, using yeast hexokinase, is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of phenacyl and para-phenylphenacyl esters, the reactions of carboxylic acids, phenols, 2-nitropropane and alcohols with alkyl halides in the presence of fluoride anion are described. The reactions are thought to be accelerated by the formation of hydrogen bonds between the fluoride anion and the organic electron acceptor. The fluoride ,carboxylic acids, fluoride-phenols and fluoride-2-nitropropane are better reaction systems than the fluoride-alcohol. The source of the fluoride anion and the choice of solvents are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysis is a mature field with extensive practical applications in today's society.indeed,the catalysis of petroleum refining,fine chemical synthesis and emission control demands the production of catalysts in bulk quantities.Future improvement of these well established processes is likely to be incremental.On the other hand,the continuous demand for new products will require additional novel and innovative processes.The need for pollution abatement and prevention also imposes new demands on catalysis, and new processes are periodically advanced for the control of emission of gases as well as for remediation processes such as the cleaning of underground waters. The number of problems where catalysis can have a big impact is constantly growing.In general,science stimulated by the technology has enriched the field of catalysis in a way that has had broad and lasting value.The thesis"Transition metal and rare earth metal modified sol-gel titania: a versatile catalyst for organic transformations" accounts the preparation and characterization studies of both transition metals and rare earth metals modified sol-gel titania and its applications in industrially useful organic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first one-pot synthesis of neutral and electron-rich [hydroxy(tosyloxy)iodo]arenes (HTIBs) from iodine and arenes is presented, thereby avoiding the need for expensive iodine(III) precursors. A large set of including a polyfluorinated analogue, can be obtained from the corresponding aryl iodide under the same conditions. The reaction proceeds under mild conditions, without excess reagents, and is fast and high-yielding. Together, the two presented routes give access to a wide range of HTIBs, which are useful reagents in a variety of synthetic transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.