545 resultados para Oligonucleótido antisense


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown.We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients.The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33-microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004).Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 3'-untranslated region (3'-UTR) of Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a luciferase reporter construct with wild-type or mutant Nocturnin 3'-UTR sequence, we demonstrated that overexpression of miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an important intersection between hepatic metabolic and circadian control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (I-K(M)), which can be inhibited by activation of M-1 muscarinic receptors (M-1 mAChR) and bradykinin (BK) B-2 receptors. Inhibition by the M1 mAChR agonist oxotremorine methiodide (Oxo-M) is mediated, at least in part, by the pertussis toxin-insensitive G-protein G alpha (q) (Caulfield et al., 1994; Haley et al., 1998a), whereas BK inhibition involves G alpha (q) and/or G alpha (11) (Jones et al., 1995). G alpha (q) and G alpha (11) can stimulate phospholipase C-beta (PLC-beta), raising the possibility that PLC is involved in I-K(M) inhibition by Oxo-M and BK. RT-PCR and antibody staining confirmed the presence of PLC-beta1, - beta2, - beta3, and - beta4 in rat SCG. We have tested the role of two PLC isoforms (PLC-beta1 and PLC-beta4) using antisense-expression constructs. Antisense constructs, consisting of the cytomegalovirus promoter driving antisense cRNA corresponding to the 3'-untranslated regions of PLC-beta1 and PLC-beta4, were injected into the nucleus of dissociated SCG neurons. Injected cells showed reduced antibody staining for the relevant PLC-beta isoform when compared to uninjected cells 48 hr later. BK inhibition of I-K(M) was significantly reduced 48 hr after injection of the PLC-beta4, but not the PLC-beta1, antisense-encoding plasmid. Neither PLC-beta antisense altered M-1 mAChR inhibition by Oxo-M. These data support the conclusion of Cruzblanca et al. (1998) that BK, but not M-1 mAChR, inhibition of I-K(M) involves PLC and extends this finding by indicating that PLC-beta4 is involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to design microspheres combining sustained delivery and enhanced intracellular penetration for ocular administration of antisense oligonucleotides. Nanosized complexes of antisense TGF-beta2 phosphorothioate oligonucleotides (PS-ODN) with polyethylenimine (PEI), and naked PS-ODN were encapsulated into poly(lactide-co-glycolide) microspheres prepared by the double-emulsion solvent evaporation method. The PS-ODN was introduced either naked or complexed in the inner aqueous phase of the first emulsion. We observed a marked influence of microsphere composition on porosity, size distribution and PS-ODN encapsulation efficiency. Mainly, the presence of PEI induced the formation of large pores observed onto microsphere surface. Introduction of NaCl in the outer aqueous phase increased the encapsulation efficiency and reduced microsphere porosity. In vitro release kinetic of PS-ODN was also investigated. Clearly, the higher the porosity, the faster was the release and the higher was the burst effect. Using an analytical solution of Fick's second law of diffusion, it was shown that the early phase of PS-ODN and PS-ODN-PEI complex release was primarily controlled by pure diffusion, irrespectively of the type of microsphere. Finally, microspheres containing antisense TGF-beta2 nanosized complexes were shown, after subconjunctival administration to rabbit, to significantly increase intracellular penetration of ODN in conjunctival cells and subsequently to improve bleb survival in a rabbit experimental model of filtering surgery. These results open up interesting prospective for the local controlled delivery of genetic material into the eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcium-binding protein calretinin has emerged as a useful marker for the identification of mesotheliomas of the epithelioid and mixed types, but its putative role in tumor development has not been addressed previously. Although exposure to asbestos fibers is considered the main cause of mesothelioma, undoubtedly, not all mesothelioma patients have a history of asbestos exposure. The question as to whether the SV40 virus is involved as a possible co-factor is still highly debated. Here we show that increased expression of SV40 early gene products in the mesothelial cell line MeT-5A induces the expression of calretinin and that elevated calretinin levels strongly correlate with increased resistance to asbestos cytotoxicity. Calretinin alone mediates a significant part of this protective effect because cells stably transfected with calretinin cDNA were clearly more resistant to the toxic effects of crocidolite than mock-transfected control cells. Down-regulation of calretinin by antisense methods restored the sensitivity to asbestos toxicity to a large degree. The protective effect observed in clones with higher calretinin expression levels could be eliminated by phosphatidylinositol 3-kinase (PI3K) inhibitors, implying an important role for the PI3K/AKT signaling (survival) pathway in mediating the protective effect. Up-regulation of calretinin, resulting from either asbestos exposure or SV40 oncoproteins, may be a common denominator that leads to increased resistance to asbestos cytotoxicity and thereby contributes to mesothelioma carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The antiangiogenic effect of an antisense oligodeoxynucleotide (ODN) targeting insulin receptor substrate (IRS)-1 was evaluated on rat corneal neovascularization. METHODS: Eyes with neovessels were treated with subconjunctival injections of IRS-1 antisense oligonucleotide (ASODN), IRS-1 sense ODN (SODN), or PBS. At 8 and 24 hours after the first subconjunctival injection, the expression of IRS-1, VEGF, and IL-1beta mRNA was evaluated. IRS-1 protein levels were also measured at 8 hours by Western blot analysis (n = 4/group). On day 10, corneal neovascularization was quantified in flatmount corneas of rats treated daily from days 4 to 9. RESULTS: On day 10, new vessels covered 95.5% +/- 4% of the corneal area in PBS-treated eyes, 92% +/- 7% in SODN-treated eyes and 59% +/- 20% in ASODN-treated eyes (P < 0.001). In the ASODN-treated group, the expression and synthesis of IRS-1 were significantly downregulated when compared with the control groups. ASODN did not significantly affect the expression of VEGF but significantly decreased the expression of IL-1beta at 24 hours (P = 0.04). CONCLUSIONS: Subconjunctival injections of IRS-1 antisense ODN significantly inhibit rat corneal neovascularization. This effect may be mediated by a downregulation of IL-1beta. IRS-1 proteins may be interesting targets for the regulation of angiogenesis mediated by insulin, hypoxia, or inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) is one of the main nutrients limiting plant growth anddevelopment in many agro-ecosystems. In plants, phosphate is acquired from the soil by theroots, and is then transferred to the shoot via the xylem. In the model plant Arabidopsisthaliana, PHO1 was previously identified as being involved in loading Pi into the xylem ofroots. AtPHO1, belongs to a multigenic family composed of 10 additional members, namelyAtPHO1;H1 to AtPHO1;10. In this study, we aimed at further investigating the role of thePHO1 gene family in Pi homeostasis in plants, and to this end we isolated and characterizedthe PHO1 members of two main model plants, the moss Physcomitrella patens and the riceOryza sativa.In the bryophyte P. patens, bioinformatic analyses revealed the presence of seven AtPHO1homologues, highly similar to AtPHO1. The seven moss PHO1 genes, namely PpPHO1;1 toPpPHO1;7 appeared to be differentially regulated, both at the tissue level and in response toPi status. However only PpPHO1;1 and PpPHO1;7 were specifically up-regulated upon Pistarvation, suggesting a potential role in Pi homeostasis. We also characterized the responseof P. patens to Pi starvation, showing that higher and lower plants share some commonstrategies to adapt to Pi-deficiency.In the second part, focusing on the monocotyledon rice, we showed the existence of threePHO1 homologues OsPHO1;1 to OsPHO1;3, with the unique particularity of each havingNatural Antisense Transcripts (NATs). Molecular analyses revealed that both the sense andthe antisense OsPHO1;2 transcripts were by far the most abundantly expressed transcripts ofthe family, preferentially expressed in the roots. The stable expression of OsPHO1;2 in allconditions tested, in opposition with the highly induced antisense transcript upon Pistarvation, suggest a putative role for the antisense in regulating the sense transcript.Moreover, mutant analyses revealed that OsPHO1;2 plays a key role in Pi homeostasis, intransferring Pi from the root to the shoot. Finally, complementing the pho1 mutant inArabidopsis, characterized by low Pi in the shoot and reduced growth, with the riceOsPHO1;2 gene revealed a new role for PHO1 in Pi signaling. Indeed, the complementedplants showed normal growth, with however low Pi content.