879 resultados para Object manipulation
Resumo:
Robotic grasping has been studied increasingly for a few decades. While progress has been made in this field, robotic hands are still nowhere near the capability of human hands. However, in the past few years, the increase in computational power and the availability of commercial tactile sensors have made it easier to develop techniques that exploit the feedback from the hand itself, the sense of touch. The focus of this thesis lies in the use of this sense. The work described in this thesis focuses on robotic grasping from two different viewpoints: robotic systems and data-driven grasping. The robotic systems viewpoint describes a complete architecture for the act of grasping and, to a lesser extent, more general manipulation. Two central claims that the architecture was designed for are hardware independence and the use of sensors during grasping. These properties enables the use of multiple different robotic platforms within the architecture. Secondly, new data-driven methods are proposed that can be incorporated into the grasping process. The first of these methods is a novel way of learning grasp stability from the tactile and haptic feedback of the hand instead of analytically solving the stability from a set of known contacts between the hand and the object. By learning from the data directly, there is no need to know the properties of the hand, such as kinematics, enabling the method to be utilized with complex hands. The second novel method, probabilistic grasping, combines the fields of tactile exploration and grasp planning. By employing well-known statistical methods and pre-existing knowledge of an object, object properties, such as pose, can be inferred with related uncertainty. This uncertainty is utilized by a grasp planning process which plans for stable grasps under the inferred uncertainty.
Resumo:
Object-oriented programming is a widely adopted paradigm for desktop software development. This paradigm partitions software into separate entities, objects, which consist of data and related procedures used to modify and inspect it. The paradigm has evolved during the last few decades to emphasize decoupling between object implementations, via means such as explicit interface inheritance and event-based implicit invocation. Inter-process communication (IPC) technologies allow applications to interact with each other. This enables making software distributed across multiple processes, resulting in a modular architecture with benefits in resource sharing, robustness, code reuse and security. The support for object-oriented programming concepts varies between IPC systems. This thesis is focused on the D-Bus system, which has recently gained a lot of users, but is still scantily researched. D-Bus has support for asynchronous remote procedure calls with return values and a content-based publish/subscribe event delivery mechanism. In this thesis, several patterns for method invocation in D-Bus and similar systems are compared. The patterns that simulate synchronous local calls are shown to be dangerous. Later, we present a state-caching proxy construct, which avoids the complexity of properly asynchronous calls for object inspection. The proxy and certain supplementary constructs are presented conceptually as generic object-oriented design patterns. The e ect of these patterns on non-functional qualities of software, such as complexity, performance and power consumption, is reasoned about based on the properties of the D-Bus system. The use of the patterns reduces complexity, but maintains the other qualities at a good level. Finally, we present currently existing means of specifying D-Bus object interfaces for the purposes of code and documentation generation. The interface description language used by the Telepathy modular IM/VoIP framework is found to be an useful extension of the basic D-Bus introspection format.
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI); crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35%) and small intestine (from 40 to 20%) of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5%) and in the distal segments of the small intestine (from 36-40 to 24-32%). In contrast, the LI of the epithelia of the esophagus (5%) and of all small intestine segments (around 30%) of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 µm in 14- and 22-day-old rats, respectively). Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 µm) and 18-day-old rats (from 480 to 360 µm). The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations
Resumo:
The state of the object-oriented programming course in Lappeenranta University of Technology had reached the point, where it required changes to provide better learning opportunities and thus the learning outcomes. Based on the student feedback the course was partially dated and ineffective. The components of the course were analysed and the ineffective elements were removed and new methods were introduced to improve the course. The major changes included the change from traditional teaching methods to reverse classroom method and the use of Java as the programming language. The changes were measured by the student feedback, lecturer’s observations and comparison to previous years. The feedback suggested that the changes were successful; the course received higher overall grade than before.
Resumo:
Questions concerning perception are as old as the field of philosophy itself. Using the first-person perspective as a starting point and philosophical documents, the study examines the relationship between knowledge and perception. The problem is that of how one knows what one immediately perceives. The everyday belief that an object of perception is known to be a material object on grounds of perception is demonstrated as unreliable. It is possible that directly perceived sensible particulars are mind-internal images, shapes, sounds, touches, tastes and smells. According to the appearance/reality distinction, the world of perception is the apparent realm, not the real external world. However, the distinction does not necessarily refute the existence of the external world. We have a causal connection with the external world via mind-internal particulars, and therefore we have indirect knowledge about the external world through perceptual experience. The research especially concerns the reasons for George Berkeley’s claim that material things are mind-dependent ideas that really are perceived. The necessity of a perceiver’s own qualities for perceptual experience, such as mind, consciousness, and the brain, supports the causal theory of perception. Finally, it is asked why mind-internal entities are present when perceiving an object. Perception would not directly discern material objects without the presupposition of extra entities located between a perceiver and the external world. Nevertheless, the results show that perception is not sufficient to know what a perceptual object is, and that the existence of appearances is necessary to know that the external world is being perceived. However, the impossibility of matter does not follow from Berkeley’s theory. The main result of the research is that singular knowledge claims about the external world never refer directly and immediately to the objects of the external world. A perceiver’s own qualities affect how perceptual objects appear in a perceptual situation.
Resumo:
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
Resumo:
Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.
Resumo:
The manipulation of large (>10 kb) plasmid systems amplifies problems common to traditional cloning strategies. Unique or rare restriction enzyme recognition sequences are uncommon and very rarely located in opportunistic locations. Making site-specific deletions and insertions in larger plasmids consequently leads to multiple step cloning strategies that are often limited by time-consuming, low efficiency linker insertions or blunt-end cloning strategies. Manipulation ofthe adenovirus genome and the genomes ofother viruses as bacterial plasmids are systems that typify such situations. Recombinational cloning techniques based on homologous recombination in Saccharomyces cerevisiae that circumvent many ofthese common problems have been developed. However, these techniques are rarely realistic options for such large plasmid systems due to the above mentioned difficulties associated with the addition ofrequired yeast DNA replication, partitioning and selectable marker sequences. To determine ifrecombinational cloning techniques could be modified to simplify the manipulation of such a large plasmid system, a recombinational cloning system for the creation of human adenovirus EI-deletion rescue plasmids was developed. Here we report for the first time that the 1,456 bp TRP1/ARS fragment ofYRp7 is alone sufficient to foster successful recombinational cloning without additional partitioning sequences, using only slight modifications of existing protocols. In addition, we describe conditions for efficient recombinational cloning involving simultaneous deletion of large segments ofDNA (>4.2 kb) and insertion of donor fragment DNA using only a single non-unique restriction site. The discovery that recombinational cloning can foster large deletions has been used to develop a novel recombiliational cloillng technique, selectable inarker 'kilockouf" recombinational cloning, that uses deletion of a yeast selectable marker coupled with simultaneous negative and positive selection to reduce background transformants to undetectable levels. The modification of existing protocols as described in this report facilitates the use of recombinational cloning strategies that are otherwise difficult or impractical for use with large plasmid systems. Improvement of general recombinational cloning strategies and strategies specific to the manipulation ofthe adenovirus genome are considered in light of data presented herein.