954 resultados para ORBITOFRONTAL CORTEX
Resumo:
Em um caso fatal de ophidismo, em individuo de 15 annos de edade, picado por uma cobra jararaca (Bothrops jararaca) na face externa da perna direita e que veio a fallecer 26 dias apoz o accidente, os A.A, descrevem as lesões anatomo-pathologicas encontradas e as modificações do metabolismo, evidenciadas pelos exames chimicos do sangue. As principaes alterações existentes, acham-se localisadas nos rins os quaes apresentam lesões de glomerulonephrite diffusa e o aspecto typico da necrose cortical symmetrica. Como alterações de maior significação observam-se ainda lesões vasculares de grande intensidade e constituidas essencialmente por processo de endoarterite productiva. A necrose symmetrica da cortex renal, a vista das intensas alterações vasculares (endoarterite productiva) que acarretaram a obliteração das arterías, é considerada como a consequencia immediata de taes lesões vasculares. Os vasos renaes, séde do processo inflammatorio, são as arterias interlobar, arciforme e interlobular, mas principalmente as arteriolares da camada cortical. O processo de endoarterite assume sempre o carater progressivo, de modo que a luz vascular vae sendo aos poucos, totalmente obstruida. Ao contrario do que se tem observado nos casos de necrose cortical symmetrica, citados na literatura, em que as alterações parenchymatosas são consequentes a thrombose dos vasos reanes, no caso presente esse aspecto não foi verificado mas tão sómente a existencia da endoarterite productiva obliterante. Consideram os A.A. as lesões renaes no caso que estudaram, como a resultante da actuação lenta e prolongada do veneno de cobra sobre as estructuras renaes, baseados nos seguintes factos já conhecidos e admittidos: eliminação do veneno de cobra pelos rins; capacidade do mesmo veneno, determinar a glomerulo-nephrite diffusa e acção do veneno de cobra sobre o endothelio vascular, facilitada essencialmente pela funcção especifica do orgão. As modificações do metabolismo se traduziram por alterações urinarias e sanguineas. As urinas foram emitidas em muito pequena quantidade (50 cc. em 24 horas) não havendo comtudo, anuria absoluta. Cylindros hyalinos e granulosos, bem como leucocytos e cellulas renaes, associadas á albuminoria, era presentes. Os exames chimicos do sangue, revelaram: Proteinas totaes 7,61 grs. em 1000 cc.; Albumina 2,39 grs em 1000 cc.; Globulina 5,22 grs. em 1000 cc.; Uréa 6,42 grs. em 1000 cc.; Fibrinogeneo 0,324 grs. em 1000 cc.; Indican +++; Cl. plasmatico 339 mgrs. em 100 cc.; Cl. globular 170 mgrs. em 100 cc.; Cholesterol 163 mgrs. em 100 cc.; Creatinia 260 mgrs. em 100 cc.; Ph. inorganico 13,4 mgrs. em 100 cc.; Calcio 10,3 mgrs em 100 cc.; Potassio 28 mgrs. em 100 cc.; Sodio 328 mgrs. em 100 cc.. O exame hematologico revelou 11% de hemoglobina; 960.000 hematias por mm.³; e 5.200 leucocytos por mm.³. A formula leucocytaria revelou augmento dos neutrophilos, com 74% dos segmentados. A proporção entre sôro o coagulo foi 9 x 3 cc. A reacção de Wassermann no sôro sanguineo foi negativa. A insufficiencia renal se traduziu no caso em estudo, por modificações humoraes, particularmente pela azotemia elevada, pelo augmento da creatinina, do phosphoro inorganico e do indican. Em contraste com a existencia de taes modificações, o doente não apresentou os signaes clinicos observados nos casos emque a azotemia se mantem elevada, reproduzindo tal facto, o quadro clinico descripto para a necrose symmetrica da cortex renal.
Resumo:
Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.
Resumo:
Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.
Resumo:
Résumé: L'objectif de l'étude est de caractériser la manifestation clinique d'une atteinte vasculaire cérébrale ischémique aiguë limitée au cortex insulaire, région intrigante et méconnue du cerveau humain. Dans la pratique clinique, une atteinte vasculaire aiguë limitée à l'insula, sans compromission d'autres régions cérébrales, est exceptionnelle et sa manifestation clinique neurologique est souvent non reconnue. L'étude est focalisée sur quatre patients, inscrits dans le Lausanne Stroke Registry, présentant une nouvelle atteinte vasculaire cérébrale avec une lésion unique purement limitée au cortex insulaire, objectivée à l'aide de la résonance magnétique (IRM). L'étude a mis en évidence cinq manifestations cliniques principales : 1) Troubles de la sensibilité corporelle sont révélé chez trois patients avec une atteinte insulaire postérieure (deux avec un syndrome pseudothalamique, un avec un déficit à distribution partielle). 2) Un patient avec une lésion insulaire postérieure gauche présent des troubles du goût. 3) Un syndrome pseudovestibulaire avec vertiges non rotatoires, instabilité à la marche sans nystagmus, est mis en évidence chez trois patients avec une atteinte ischémique insulaire postérieure. 4) Un patient avec atteinte de l'insula postérieure droite présente des épisodes d'hypertension artérielle d'origine cryptique. 5) Des troubles neuropsychologiques tels qu'aphasie et dysarthrie sont détectés chez les patients avec une atteinte insulaire postérieure gauche, un épisode de somatoparaphrénie est rapporté avec une atteinte insulaire postérieure droite. En conclusion, les atteintes vasculaires cérébrales ischémiques aiguës limitées au cortex insulaire postérieur peuvent se manifester principalement avec un tableau clinique caractérisé par un syndrome pseudothalamique associé à une symptomatologie pseudovertigineuse. Les lésions insulaires postérieures peuvent se manifester avec une dysarthrie et des troubles du goût, une aphasie (gauche), une somatoparaphrénie et une dysfonction hypertensive (droite). L'étude n'a pas mis en évidence de dysphagie, reportée dans les atteintes insulaires antérieures. Abstract: Objective: To characterize clinically acute insular strokes from four patients with, a first ever acute stroke restricted to the insula on MRI. Methods: The authors studied the clinical presentation of four patients with a first ever acute stroke restricted to the insula on MRI. Results: The authors found five main groups of clinical presentations: 1) somatosensory deficits in three patients with posterior insular stroke (two with a transient pseudothalamic sensory syndrome, one with partial distribution); 2) gustatory disorder in a patient with left posterior insular infarct; 3) vestibular-like syndrome, with dizziness, gait instability, and tendency to fall, but no nystagmus, in three patients with posterior insular strokes; 4) cardiovascular disturbances, consisting of hypertensive episodes in a patient with a right posterior insular infarct; and 5) neuropsychological disorders, including aphasia (left posterior insula), dysarthria, and transient somatoparaphrenia (right posterior insula). Conclusion: Strokes restricted to the posterior insula may present with pseudothalamic sensory and vestibular-like syndromes as prominent clinical manifestations, but also dysarthria and aphasia (in left lesions), somatoparaphrenia (right lesions) and gustatory dysfunction and blood pressure with hypertensive episodes in right lesions; we did not find acute dysphagia reported in anterior, insular strokes.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.
Resumo:
The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.
Resumo:
The presence of von Economo neurons (VENs) in the frontoinsular cortex (FI) has been linked to a possible role in the integration of bodily feelings, emotional regulation, and goal-directed behaviors. They have also been implicated in fast intuitive evaluation of complex social situations. Several studies reported a decreased number of VENs in neuropsychiatric diseases in which the "embodied" dimension of social cognition is markedly affected. Neuropathological analyses of VENs in patients with autism are few and did not report alterations in VEN numbers. In this study we re-evaluated the possible presence of changes in VEN numbers and their relationship with the diagnosis of autism. Using a stereologic approach we quantified VENs and pyramidal neurons in layer V of FI in postmortem brains of four young patients with autism and three comparably aged controls. We also investigated possible autism-related differences in FI layer V volume. Patients with autism consistently had a significantly higher ratio of VENs to pyramidal neurons (p=0.020) than control subjects. This result may reflect the presence of neuronal overgrowth in young patients with autism and may also be related to alterations in migration, cortical lamination, and apoptosis. Higher numbers of VENs in the FI of patients with autism may also underlie a heightened interoception, described in some clinical observations.
Resumo:
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following lesion, spontaneous recovery of manual dexterity takes place to a highly variable extent across subjects, although largely incomplete. In the present study, we tested the hypothesis that after a significant postlesion period, manual performance in the ipsilesional hand is correlated with the extent of functional recovery in the contralesional hand. To this aim, ten adult macaque monkeys were subjected to permanent unilateral motor cortex lesion. Monkeys' manual performance was assessed for each hand during several months postlesion, using our standard behavioral test (modified Brinkman board task) that provides a quantitative measure of reach and grasp ability. The ipsilesional hand's performance was found to be significantly enhanced over the long term (100-300 days postlesion) in six of ten monkeys, with the six exhibiting the best, though incomplete, recovery of the contralesional hand. There was a statistically significant correlation (r = 0.932; P < 0.001) between performance in the ipsilesional hand after significant postlesion period and the extent of recovery of the contralesional hand. This observation is interpreted in terms of different possible mechanisms of recovery, dependent on the recruitment of motor areas in the lesioned and/or intact hemispheres.
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Resumo:
GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.
Resumo:
Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.