1000 resultados para OPTIMAL CLONING
Resumo:
Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Digital image
Resumo:
In this paper we consider the problem of computing an “optimal” popular matching. We assume that our input instance View the MathML source admits a popular matching and here we are asked to return not any popular matching but an optimal popular matching, where the definition of optimality is given as a part of the problem statement; for instance, optimality could be fairness in which case we are required to return a fair popular matching. We show an O(n2+m) algorithm for this problem, assuming that the preference lists are strict, where m is the number of edges in G and n is the number of applicants.
Resumo:
Optimal bang-coast maintenance policies for a machine, subject to failure, are considered. The approach utilizes a semi-Markov model for the system. A simplified model for modifying the probability of machine failure with maintenance is employed. A numerical example is presented to illustrate the procedure and results.
Resumo:
This work combines the cognitive theory of folk-theoretical thought with the classical Aristotelian theory of artistic proof in rhetoric. The first half of the work discusses the common ground shared by the elements of artistic proof (logos, pathos, ethos) and the elements of folk-theoretical thought (naïve physics, folk biology, folk psychology, naïve sociology). Combining rhetoric with the cognitive theory of folk-theoretical thought creates a new point of view for argumentation analysis. The logos of an argument can be understood as the inferential relations established between the different parts of an argument. Consequently, within this study the analysis of logos is to be viewed as the analysis of the inferential folk-theoretical elements that make the suggested factual states-of-things appear plausible within given argumentative structures. The pathos of an argumentative structure can be understood as determining the quality of the argumentation in question in the sense that emotive elements play a great part in what can be called a distinction between good and deceptive rhetoric. In the context of this study the analysis of pathos is to be viewed as the analysis of the emotive content of argumentative structures and of whether they aim at facilitating surface- or deep cognitive elaboration of the suggested matters. The ethos of an argumentative structure means both the speaker-presentation and audience-construct that can be discerned within a body of argumentation. In the context of this study, the analysis of ethos is to be understood as the analysis of mutually manifest cognitive environments in the context of argumentation. The theory is used to analyse Catholic Internet discussion concerning cloning. The discussion is divided into six themes: Human Dignity, Sacred Family, Exploitation / Dehumanisation, Playing God, Monsters and Horror Scenarios and Ensoulment. Each theme is analysed for both the rhetorical and the cognitive elements that can be seen creating persuasive force within the argumentative structures presented. It is apparent that the Catholic voices on the Internet extensively oppose cloning. The voices utilise rhetoric that is aggressive and pejorative more often than not. Furthermore, deceptive rhetoric (in the sense presented above) plays a great part in argumentative structures of the Catholic voices. The theory of folk-theoretical thought can be seen as a useful tool for analysing the possible reasons why the Catholic speakers think about cloning and choose to present cloning in their argumentation as they do. The logos utilized in the argumentative structures presented can usually be viewed as based on folk-theoretical inference concerning biology and psychology. The structures of pathos utilized generally appear to aim at generating fear appeal in the assumed audiences, often incorporating counter-intuitive elements. The ethos utilised in the arguments generally revolves around Christian mythology and issues of social responsibility. These structures can also be viewed from the point of view of folk psychology and naïve sociological assumptions.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
This paper presents an analysis of an optimal linear filter in the presence of constraints on the moan squared values of the estimates from the viewpoint of singular optimal control. The singular arc has been shown to satisfy the generalized Legcndrc-Clebseh condition and Jacobson's condition. Both the cases of white measurement noise and coloured measurement noise are considered. The constrained estimate is shown to be a linear transformation of the unconstrained Kalman estimate.
Resumo:
The stochastic version of Pontryagin's maximum principle is applied to determine an optimal maintenance policy of equipment subject to random deterioration. The deterioration of the equipment with age is modelled as a random process. Next the model is generalized to include random catastrophic failure of the equipment. The optimal maintenance policy is derived for two special probability distributions of time to failure of the equipment, namely, exponential and Weibull distributions Both the salvage value and deterioration rate of the equipment are treated as state variables and the maintenance as a control variable. The result is illustrated by an example
Resumo:
In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
Among the iterative schemes for computing the Moore — Penrose inverse of a woll-conditioned matrix, only those which have an order of convergence three or two are computationally efficient. A Fortran programme for these schemes is provided.