879 resultados para O33 - Technological Change: Choices and Consequences
Resumo:
We instillate rational cognition and learning in seemingly riskless choices and judgments. Preferences and possibilities are given in a stochastic sense and based on revisable expectations. the theory predicts experimental preference reversals and passes a sharp econometric test of the status quo bias drawn from a field study.
Resumo:
"Jon B. Skjaerseth, professeur associé, Fridtjof Nansen Institute (Norvège), a présenté dans le cadre du panel Gestion des risques environnementaux par les institutions financières, une conférence intitulée ""The evolution and consequences of the EU Emissions Trading System (EU ETS)""."
Resumo:
School of Management Studies, Cochin University of Science and Technology
Resumo:
Este texto, escrito por expertos internacionales, sostiene que el cambio climático debe considerarse como una cuestión de seguridad humana y no como un problema ambiental que pueda gestionarse en solitario. Muestra el concepto de seguridad humana con un nuevo enfoque ligado a los desafíos que el cambio climático ofrece a la humanidad, así como da respuestas para un futuro más equitativo y sostenible para las próximas generaciones. El cambio climático, la ética y la seguridad humana serán de interés para los investigadores, los responsables políticos y los profesionales interesados con las dimensiones humanas del cambio climático, así como para los estudiantes de nivel superior en ciencias sociales y humanidades preocupados por este problema.
Resumo:
Se adapta a las especificaciones AS y A de 2008 para OCR y Edexcel. Se centra en la expansión hacia el oeste de Estados Unidos y los problemas que ello causó. A continuación, examina la llegada al poder del Partido Republicano y la elección presidencial de 1860, las causas de la guerra civil, la victoria de la Unión y el período de reconstrucción. Incluye fechas clave, términos y temas, perfiles biográficos, resúmenes esquemáticos, fuentes literarias y síntesis de los principales debates historiográficos.
Resumo:
Many modelling studies examine the impacts of climate change on crop yield, but few explore either the underlying bio-physical processes, or the uncertainty inherent in the parameterisation of crop growth and development. We used a perturbed-parameter crop modelling method together with a regional climate model (PRECIS) driven by the 2071-2100 SRES A2 emissions scenario in order to examine processes and uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large-Area Model for annual crops (GLAM). Two sets of GLAM simulations were carried out: control simulations and fixed-duration simulations, where the impact of mean temperature on crop development rate was removed. Model results were compared to sensitivity tests using two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995, A peanut simulation model: I. Model development and testing. Agron. J. 87, 1085-1093]. GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit (VPD) consistently reduced yield. The same result was seen in some simulations using both other crop models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the models differed in their response to super-optimal temperatures, and that difference increased with mean temperature; percentage changes in yield between current and future climates were as diverse as -50% and over +30% for the same input data. The first process has been observed in many crop experiments, whilst the second has not. Thus, we conclude that there is a need for: (i) more process-based modelling studies of the impact of VPD on assimilation, and (ii) more experimental studies at super-optimal temperatures. Using the GLAM results, central values and uncertainty ranges were projected for mean 2071-2100 crop yields in India. In the fixed-duration simulations, ensemble mean yields mostly rose by 10-30%. The full ensemble range was greater than this mean change (20-60% over most of India). In the control simulations, yield stimulation by elevated CO2 was more than offset by other processes-principally accelerated crop development rates at elevated, but sub-optimal, mean temperatures. Hence, the quantification of uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future climates. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow. In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the inertia–gravity waves at the peak of their generation. The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy for deep interior mixing in the ocean.
Resumo:
Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.