991 resultados para Nude Mice


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to characterize epidermal hyperplasia overlying malignant melanoma, to determine the mitogenic factor responsible for the induction of this hyperplasia and to investigate its biological consequence. Whether increased keratinocyte proliferation overlying melanoma is due to production of growth factors by the tumor cells or to other mechanisms is unknown. Epidermal hyperplasia overlying human melanoma was found overlying thick (>4.0mm), but not thin (<1.0mm) tumors. Immunostaining of the sections for growth factors related to angiogenesis revealed that epidermal hyperplasia was associated with loss of IFN-β production by the keratinocytes directly overlying the tumors. Since previous studies from our laboratory have demonstrated that exogenous administration of IFN-β negatively regulates angiogenesis, we hypothesize that tumors are able to produce growth factors which stimulate the proliferation of cells in the surrounding tissues. This hyperplasia leads to a decrease in the endogenous negative regulator of angiogenesis, IFN-β. ^ The human melanoma cell line, DM-4 and several of its clones were studied to identify the mitogenic factor for keratinocytes. The expression of TGF-α directly correlated with epidermal hyperplasia in the DM-4 clones. A375SM, a human melanoma cell line that produces high levels of TGF-α, was transfected with a plasmid encoding full-length antisense TGF-α. The parental and transfected cells were implanted intradermally into nude mice. The extent of epidermal hyperplasia directly correlated with expression of TGF-α and decreased production of IFN-β, hence, increased angiogenesis. ^ In the next set of experiments, we determined the role of IFN-β on angiogenesis, tumor growth and metastasis of skin tumors. Transgenic mice containing a functional mutation in the receptor for IFN α/β were obtained. A375SM melanoma cells were implanted both s.c. and i.v. into IFN α/βR −/− mice. Tumors in the IFN α/β R −/− mice exhibited increased angiogenesis and metastasis. IFN α/βR −/− mice were exposed to chronic UV irradiation. Autochthonous tumors developed earlier in the transgenic mice than the wild-type mice. ^ Collectively, the data show that TGF-α produced by tumor cells induces proliferation of keratinocytes, leading to epidermal hyperplasia overlying malignant melanoma associated with loss of IFN-β and enhanced angiogenesis, tumorigenicity and metastasis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vasculogenesis is the process by which Endothelial Precursor Cells (EPCs) form a vasculature. This process has been traditionally regarded as an embryological process of vessel formation. However, as early as in the 60's the concept of postnatal vasculogenesis was introduced, with a strong resurface of this idea in recent years. Similarly, previous work on a mouse skin tumor model provided us with the grounds to consider the role of vasculogenesis during tumor formation. ^ We examined the contribution of donor bone marrow (BM)-derived cells to neovascularization in recipient nude mice with Ewing's sarcoma. Ewing's sarcoma is a primitive neuroectodermal tumor that most often affects children and young adults between 5 and 30 years of age. Despite multiple attempts to improve the efficacy of chemotherapy for the disease, the 2-year metastases-free survival rate for patients with Ewing's sarcoma has not improved over the past 15 years. New therapeutic approaches are therefore needed to reduce the mortality rate. ^ The contribution of BM endothelial precursor cells in the development of Ewing's sarcoma was examined using different strategies to track the donor-derived cells. Using a BMT model that takes advantage of MHC differences between donor and recipient mice, we have found that donor BM cells were involved in the formation of Ewing's sarcoma vasculature. ^ Cells responsible for this vasculogenesis activity may be located within the stem cell population of the murine BM. These stem cells would not only generate the hematopoietic lineage but they would also generate ECs. Bone marrow SP (Side Population) cells pertain to a subpopulation that can be identified using flow cytometric analysis of Hoechst 33342-stained BM. This population of cells has HSC activity. We have tested the ability of BM SP cells to contribute to vasculogenesis in Ewing's sarcoma using our MHC mismatched transplant model. Mice transplanted with SP cells developed tumor neovessels that were derived from the donor SP cells. Thus, SP cells not only replenished the hematopoietic system of the lethally irradiated mice, but also differentiated into a non-hematopoietic cell lineage and contributed to the formation of the tumor vasculature. ^ In summary, we have demonstrated that BM-derived cells are involved in the generation of the new vasculature during the growth of Ewing's sarcoma. The finding that vasculogenesis plays a role in Ewing's sarcoma development opens the possibility of using genetically modified BM-derived cells for the treatment of Ewing's sarcomas. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer is the number two cancer killer in the United States. Although primary colorectal cancer can be resected by surgery, patients often die from metastatic disease. Liver is the most common site of metastasis for colorectal cancer. It is difficult to selectively kill metastatic colon cancer cells without damaging normal liver functions. Thus it becomes a high priority to develop a selective targeting system for the treatment of colorectal cancer liver metastasis. ^ In the current study, a gene therapy strategy that allows a therapeutic gene to selectively destroy metastatic colon cancer cells without affecting normal liver cells is developed. The APC gene is frequently mutated in colorectal cancers. These mutations activate β-catenin responsive promoters. An optimized β-catenin responsive promoter, containing TCF consensus binding sites, was engineered for this study. This TCF promoter was found to express preferentially in APC mutated/β-catenin activated colorectal cancers while maintaining a low expression level in cell lines of liver origin. A recombinant adenoviral vector AdTCF-TK, in which the TCF promoter controls expression of the herpes simplex virus thymidine kinase gene, selectively destroyed colorectal cancer cells in vitro. AdTCF-TK virus and ganciclovir treatment also inhibited the growth of solid tumour derived from the colon cancer cell line DLD-1 in nude mice. In a control experiment, the growth inhibition effect of the same virus was attenuated in a liver cancer cell line. ^ In the present study, a novel method was developed to target therapeutic gene expression to colon cancer cells at reduced liver toxicity to the patients. The same gene therapy design may also be applied to treat tumours carrying mutations in the β-catenin gene, which is a central component of the APC signal transduction pathway. In summary, the principle for a rational design of a cancer specific treatment approach is demonstrated in this study. In the future, mutations in cancer patients will be more easily identified. Using the same principle developed in this study, specific regimen can be designed to treat these patients based on the specific genetic changes found in the tumour. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activator protein 2α (AP-2) is a transcription factor known to play a crucial role in the progression of malignant melanoma, colorectal carcinoma, and breast cancer. Several AP-2 target genes are known to be deregulated in prostate cancer, therefore, we hypothesize that loss AP-2 expression plays a causal role in prostate carcinogenesis. Immunofluorescent staining for AP-2 of 30 radical prostatectomy specimens demonstrated that while AP-2 was highly expressed in normal prostate epithelium, its expression was lost in most cases of high grade prostatic intraepithelial neoplasia (PIN), and all cases of prostate cancer studied. Additional analyses demonstrated that AP-2 was associated with normal luminal differentiation and it was not expressed in the basal cell layer. In cell lines, AP-2 was strongly expressed in immortalized normal prostate epithelial cells, whereas low expression was observed in the LNCaP, LNCaP-LN3, and PC3M-LN4 prostate cancer cell lines. Transfection of the highly tumorigenic and metastatic cell line PC3M-LN4 with the AP-2 gene significantly decreased tumor growth in the prostate of nude mice (p = 0.032) and inhibited metastases to the lymph nodes. Moreover, transfection of the low tumorigenic, low metastatic cell line LNCaP-LN3 with full length AP-2; resulted in complete inhibition of tumor incidence in the AP-2 transfectants (0/19) vs. neo control (10/16). A potential mechanism for this loss of tumorigenicity was the modulation of gene expression in prostate cancer cells that mimicked the normal phenotype. Analysis of differential expression between neo control- and AP-2-transfected cells in vitro and in tumors demonstrated low VEGF expression in AP-2 transfectants. We further demonstrated that AP-2 acted as a transcriptional repressor of the VEGF promoter by binding to a GC-rich region located between −88 and −66. This region contains an AP-2 consensus element overlapping two Sp1 consensus elements. We found that Sp3 and AP-2 bound to this region in a mutually exclusive manner to promote activation or repression. Increased VEGF expression has been observed in high grade PIN and in prostate cancer. Here we provide evidence that this early molecular change could be a result of loss of AP-2 expression in the prostatic epithelium. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a member of the TNF superfamily of cytokines that can induce cell death through engagement of cognate death receptors. Unlike other death receptor ligands, it selectively kills tumor cells while sparing normal cells. Preclinical studies in non-human primates have generated much enthusiasm regarding its therapeutic potential. However, many human cancer cell lines exhibit significant resistance to TRAIL-induced apoptosis, and the molecular mechanisms underling this are controversial. Possible explanations are typically cell-type dependent, but include alterations of receptor expression, enhancement of pro-apoptotic intracellular signaling molecules, and reductions in anti-apoptotic proteins. We show here that the proteasome inhibitor bortezomib (Velcade, PS-341) produces synergistic apoptosis in both bladder and prostate cancer cell lines within 4-6 hours when co-treated with recombinant human TRAIL which is associated with accumulation of p21 and cdk1/2 inhibition. Our data suggest that bortezomib's mechanism of action involves a p21-dependent enhancement of caspase maturation. Furthermore, we found enhanced tumor cell death in in vivo models using athymic nude mice. This is associated with increases in caspase-8 and caspase-3 cleavage as well as significant reductions in microvessel density (MVD) and proliferation. Although TRAIL alone had less of an effect, its biological significance as a single agent requires further investigations. Toxicity studies reveal that the combination of bortezomib and rhTRAIL has fatal consequences that can be circumvented by altering treatment schedules. Based on our findings, we conclude that this strategy has significant therapeutic potential as an anti-cancer agent. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent data suggest that the generation of new lymphatic vessels (i.e. lymphangiogenesis) may be a rate-limiting step in the dissemination of tumor cells to regional lymph nodes. However, efforts to study the cellular and molecular interactions that take place between tumor cells and lymphatic endothelial cells have been limited due to a lack of lymphatic endothelial cell lines available for study. ^ I have used a microsurgical approach to establish conditionally immortalized lymphatic endothelial cell lines from the afferent mesenteric lymphatic vessels of mice. Characterization of lymphatic endothelial cells, and tumor-associated lymphatic vessels revealed high expression levels of VCAM-1, which is known to facilitate adhesion of some tumor cells to vascular endothelial cells. Further investigation revealed that murine melanoma cells selected for high expression of α4, a counter-receptor for VCAM-1, demonstrated enhanced adhesion to lymphatic endothelial cells in vitro, and increased tumorigenicity and lymphatic metastasis in vivo, despite similar lymphatic vessel numbers. ^ Next, I examined the effects of growth factors that regulate lymphangiogenesis, and report that several growth factors are capable of activating survival and proliferation pathways of lymphatic endothelial cells. The dual protein tyrosine kinase inhibitor AEE788 (EGFR and VEGFR-2) inhibited the activation of Akt and MAPK in lymphatic endothelial cells responding to multiple growth factors. Moreover, oral treatment of mice with AEE788 decreased lymphatic vessel density and production of lymphatic metastasis by human colon cancer cells growing in the cecum of nude mice. ^ In the last set of experiments, I investigated the surgical management of lymphatic metastasis using a novel model of sentinel lymphadenectomy in live mice bearing subcutaneous B16-BL6 melanoma. The data demonstrate that this procedure when combined with wide excision of the primary melanoma, significantly enhanced survival of syngeneic C57BL/6 mice. ^ Collectively, these results indicate that the production of lymphatic metastasis depends on lymphangiogenesis, tumor cell adhesion to lymphatic endothelial cells, and proliferation of tumor cells in lymph nodes. Thus, lymphatic metastasis is a multi-step, complex, and active process that depends upon multiple interactions between tumor cells and tumor associated lymphatic endothelial cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclin E, in complex with cyclin dependent kinase 2 (CDK2), is a positive regulator of G1 to S phase progression of the cell cycle. Deregulation of G1/S phase transition occurs in the majority of tumors. Cyclin E is overexpressed and post-translationally generates low molecular weight (LMW) isoforms in breast cancer, but not normal cells. Such alteration of cyclin E is linked to poor prognosis. Therefore, we hypothesized that the LMW isoforms of cyclin E provide a novel mechanism of cell cycle de-regulation in cancer cells. Insect cell expression system was used to explore the biochemical properties of the cyclin E isoforms. Non-tumorigenic (76NE6) and tumorigenic (T47D) mammary epithelial cells transfected with the cyclin E isoforms and breast tumor tissue endogenously expressing the LMW isoforms were used to study the biologic consequences of the LMW isoforms of cyclin E. All model systems studied show that the LMW forms (compared to full-length cyclin E) have increased kinase activity when partnered with CDK2. Increases in the percentage of cells in S phase and colony formation were also observed after overexpression of LMW compared to full-length cyclin E. The LMW isoforms of cyclin E utilize several mechanisms to attain their hyper-activity. They bind CDK2 more efficiently, and are resistant to inhibition by cyclin dependent kinase inhibitors (CKIs) as compared to full-length cyclin E. In addition, the LMW isoforms sequester the CKIs from full-length cyclin E abrogating the overall negative regulation of cyclin E. Despite their correlation with adverse biological consequences, the direct role of the LMW isoforms of cyclin E in mediating tumorigenesis remained unanswered. Subsequent to LMW cyclin E expression in 76NE6 cells, they lose their ability to enter quiescence and exhibit genomic instability, both characteristic of a tumor cell phenotype. Furthermore, injection of 76NE6 cells overexpressing each of the cyclin E isoforms into the mammary fat pad of nude mice revealed that the LMW isoforms of cyclin E yield tumors, whereas the full-length cyclin E does not. In conclusion, the LMW isoforms of cyclin E utilize several mechanisms to acquire a hyperactive phenotype that results in deregulation of the cell cycle and initiates the tumorigenic process in otherwise non-transformed mammary epithelial cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overexpression of the thrombin receptor (Protease-Activated-Receptor-1), PAR-1, in cell lines and tissue specimens correlates with the metastatic potential of human melanoma. Utilizing lentiviral shRNA to stably silence PAR-1 in metastatic melanoma cell lines results in decreased tumor growth and lung metastasis in vivo. Since the use of viral technology is not ideal for clinical therapies, neutral liposomes (DOPC) were utilized as a delivery vehicle for PAR-1 siRNA. Our data suggest that PAR-1 siRNA-DOPC treatment by systemic delivery significantly decreases tumor growth and lung metastasis in nude mice. Concomitant decreases in angiogenic and invasive factors (IL-8, VEGF, MMP-2) were observed in PAR-1 siRNA-DOPC-treated mice. Utilizing a cDNA microarray platform, several novel PAR-1 downstream target genes were identified, including Connexin 43 (Cx-43) and Maspin. Cx-43, known to be involved in tumor cell diapedesis and attachment to endothelial cells, is decreased after PAR-1 silencing. Furthermore, the Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells suggesting transcriptional regulation of Cx-43 by PAR-1. ChIP analysis revealed a reduction in SP-1 and AP-1 binding to the Cx-43 promoter. Moreover, melanoma cell attachment to HUVEC was significantly decreased in PAR-1-silenced cells as well as in Cx-43 shRNA transduced cells. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Maspin, a serine protease inhibitor with tumor-suppressor function, was found to be upregulated after PAR-1 silencing. Our results indicate that PAR-1 transcriptionally regulates Maspin, as the promoter activity was significantly increased after PAR-1 silencing. ChIP analysis revealed that silencing PAR-1 increased binding of Ets and c-Jun to the Maspin promoter. As Maspin was recently found to be a tumor-suppressor in melanoma by reducing the invasive capacity of melanoma cells, invasion assays revealed a decrease in invasion after PAR-1 silencing and in cells transduced with a Maspin expression vector. We propose that PAR-1 is key to the progression and metastasis of melanoma in part by regulating the expression of Cx-43 and Maspin. Taken together, we propose that PAR-1 is an attractive target for the treatment of melanoma.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cloned nontumorigenic prostatic epithelial cell line, NbE-1.4, isolated from Noble (nbl/crx) rat ventral prostate, was used to examine the potential role of activated myc and neu oncogenes in prostate carcinogenesis. Transfection of SV40 promoter/enhancer driven constructs containing either v-myc, truncated c-myc, or neu-T (activated neu) oncogenes was accomplished using calcium phosphate-mediated DNA transfer. Cells were cotransfected, as necessary, with pSV2neo, allowing for selection of positive clones using the antibiotic geneticin (G418). G418 resistant colonies were pooled in some cases or limiting dilution exclusion cloned in others as described. Transfection of NbE-1.4 cells with activated myc oncogenes resulted only in the partial transformation. These cells display an altered morphology and decreased dependence on serum factors in vitro; however, saturation density, soft agar colony formation and growth assay in male athymic nude mice were all negative. Transfection and overexpression of NbE-1.4 cells with an activated neu oncogene alone resulted in tumorigenic conversion. Cell transformation was evident following an examination of the altered cellular morphology, an increased soft agar colony formation, and an acquisition of a tumorigenic potential when injected s.c. into male athymic nude mice. neu-transformed NbE-1.4 cells displayed elevated activity of the neu receptor tyrosine kinase. Furthermore, qualitative changes in tyrosine phosphorylated proteins were found in neu transformed cell clones. These changes were associated with elevated expression of mRNAs for laminin $\beta$1, $\beta$2, and procollagen type IV. The expression of fibronectin and E-cadherin, which are often lost during tumorigenesis, did not correlate with the tumorigenic phenotype. Therefore, it appears that neu oncogene overexpression has been found to be associated with the transformation of rat prostatic epithelial cells, presumably through alterations in gene expression that regulate extracellular matrix. The possible interrelationship and functional significance between neu oncogene expression and the elevated extracellular matrix gene expression is discussed. ^