981 resultados para Nonlinear portal frame dynamics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1?:?1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequency-amplitude modulation. The internal resonance leads to an antiresonance response of the Duffing resonator and a stagnant response (a small shoulder in the curve) of the van der Pol oscillator. The stability of the dynamic motions is also analyzed. The coupled system shows a hysteretic response pattern and symmetry-breaking facets. Chaotic behaviour of the coupled system is also observed and the dependence of the system dynamics on the parameters are also studied using bifurcation analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For analysing financial time series two main opposing viewpoints exist, either capital markets are completely stochastic and therefore prices follow a random walk, or they are deterministic and consequently predictable. For each of these views a great variety of tools exist with which it can be tried to confirm the hypotheses. Unfortunately, these methods are not well suited for dealing with data characterised in part by both paradigms. This thesis investigates these two approaches in order to model the behaviour of financial time series. In the deterministic framework methods are used to characterise the dimensionality of embedded financial data. The stochastic approach includes here an estimation of the unconditioned and conditional return distributions using parametric, non- and semi-parametric density estimation techniques. Finally, it will be shown how elements from these two approaches could be combined to achieve a more realistic model for financial time series.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity. © 2014 World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a theoretical framework for modeling of continuous wave Yb-doped fiber lasers with highly nonlinear cavity dynamics. The developed approach has shown good agreement between theoretical predictions and experimental results for particular scheme of Yb-doped laser with large spectral broadening during single round trip. The model is capable to accurately describe main features of the experimentally measured laser outputs such as power efficiency slope, power leakage through fibre Bragg gratings, spectral broadening and spectral shape of generated radiation. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern high-power, pulsed lasers are driven by strong intracavity fluctuations. Critical in driving the intracavity dynamics is the nontrivial phase profiles generated and their periodic modification from either nonlinear mode-coupling, spectral filtering or dispersion management. Understanding the theoretical origins of the intracavity fluctuations helps guide the design, optimization and construction of efficient, high-power and high-energy pulsed laser cavities. Three specific mode-locking component are presented for enhancing laser energy: waveguide arrays, spectral filtering and dispersion management. Each component drives a strong intracavity dynamics that is captured through various modeling and analytic techniques.