960 resultados para Non-constant coefficient diffusion equations
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.
Resumo:
We present an overview of the statistical mechanics of self-organized criticality. We focus on the successes and failures of hydrodynamic description of transport, which consists of singular diffusion equations. When this description applies, it can predict the scaling features associated with these systems. We also identify a hard driving regime where singular diffusion hydrodynamics fails due to fluctuations and give an explicit criterion for when this failure occurs.
Resumo:
In this paper a utilization of the high data-rates channels by threading of sending and receiving is studied. As a communication technology evolves the higher speeds are used more and more in various applications. But generating traffic with Gbps data-rates also brings some complications. Especially if UDP protocol is used and it is necessary to avoid packet fragmentation, for example for high-speed reliable transport protocols based on UDP. For such situation the Ethernet network packet size has to correspond to standard 1500 bytes MTU[1], which is widely used in the Internet. System may not has enough capacity to send messages with necessary rate in a single-threaded mode. A possible solution is to use more threads. It can be efficient on widespread multicore systems. Also the fact that in real network non-constant data flow can be expected brings another object of study –- an automatic adaptation to the traffic which is changing during runtime. Cases investigated in this paper include adjusting number of threads to a given speed and keeping speed on a given rate when CPU gets heavily loaded by other processes while sending data.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.
Resumo:
The paper is dedicated to the theory which describes physical phenomena in non-constant statistical conditions. The theory is a new direction in probability theory and mathematical statistics that gives new possibilities for presentation of physical world by hyper-random models. These models take into consideration the changing of object’s properties, as well as uncertainty of statistical conditions.
Resumo:
We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.
Resumo:
Nowadays, wireless communications systems demand for greater mobility and higher data rates. Moreover, the need for spectral efficiency requires the use of non-constant envelope modulation schemes. Hence, power amplifier designers have to build highly efficient, broadband and linear amplifiers. In order to fulfil these strict requirements, the practical Doherty amplifier seems to be the most promising technique. However, due to its complex operation, its nonlinear distortion generation mechanisms are not yet fully understood. Currently, only heuristic interpretations are being used to justify the observed phenomena. Therefore, the main objective of this work is to provide a model capable of describing the Doherty power amplifier nonlinear distortion generation mechanisms, allowing the optimization of its design according to linearity and efficiency criteria. Besides that, this approach will allow a bridge between two different worlds: power amplifier design and digital pre-distortion since the knowledge gathered from the Doherty operation will serve to select the most suitable pre-distortion models.
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.